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Abstract

In this paper, a blood vortex is modelled using the Navier-Stokes equations, and its effects
on the motion of the aortic valve are analyzed using a simple drag model. The vorticity of this
vortex is then used as a control input to close the aortic valve for specific goal times representing
the full range of human heart rates. The controller design is presented sequentially, building
from a basic linear state feedback controller to an event-triggered discrete-time linear state
feedback controller which uses a polynomial function of valve angle to produce control gains.
This work appears to be unique in fluids research literature, as it focuses on the control of
fluid flow to move an unactuated body immersed in the flow, whereas much of the existing
related literature focuses on either the control of articulated bodies immersed in uncontrolled
fluid flow or the control of fluid flow around stationary bodies.

1



Acknowledgements

The authors would like to acknowledge the outstanding faculty support received throughout their
four years of study in the Mathematics and Engineering Program, as well as the supervision of
Professor Andrew Lewis. The authors would also like to thank all of those at Queen’s University
who continued to work during the COVID-19 pandemic; their continued efforts made it possible
for this paper to be completed. We also extend our gratitude to all of the healthcare workers,
retail employees, truck drivers, and others who provided necessary services to our country during
the pandemic.

2



Contents

1 Introduction 7

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Impacts of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Project Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background and Literature Review 8

2.1 Fluid Dynamics in Left Ventricle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Control of Fluids Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Discrete-Time and Event-Triggered Control . . . . . . . . . . . . . . . . . . . . . . 9

3 Model of Valve Closure 10

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Vortex Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Verifying Satisfaction of Navier-Stokes Equations by Lamb-Oseen Vortex . 12

3.3 Parameters of Valve and Blood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Forces on Valve and Motion Update . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Pressure Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.2 Friction Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.3 Motion Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Model Assumptions and Potential Failures . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Conclusions on Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Implementing a Controller 20

4.1 Necessary Criteria for Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Linearizing the System Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.2 Implementing the Control Algorithm . . . . . . . . . . . . . . . . . . . . . . 22

4.2.3 Tracking a Linear Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.4 Tracking a Step Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.5 Comparing Control Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Adding Measurement Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Implementing Controller Sample Rate . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Designing an Event-Triggered Control Algorithm . . . . . . . . . . . . . . . . . . . 31

3



4.6 Approximating Control Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 A Possible Self-Triggered Control Algorithm . . . . . . . . . . . . . . . . . . . . . . 36

4.8 A Note on the Controllability of the System . . . . . . . . . . . . . . . . . . . . . . 37

4.9 Ability to Meet Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.10 Conclusions on Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Discussion of Results 38

6 Engineering Impact of Solution 38

6.1 Social . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Environmental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3 Economic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.4 Ethics and Equity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Recommendations 40

7.1 Recommendations for Artificial Heart . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2 Recommendations for Fluids Research . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Conclusion 41

9 Appendix: MATLAB Code 46

9.1 Main Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9.2.1 Updating Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9.2.2 Calling Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.3 Event-Trigger Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4



List of Figures

1 Valve in vortex flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Lamb-Oseen vortices used for modelling blood flow in the heart [25] . . . . . . . . 9

3 Selection of Lamb-Oseen vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Tricuspid nature of aortic valve [32] . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Diagram of valve during numerical integration . . . . . . . . . . . . . . . . . . . . . 16

6 Diagram of valve moving in motionless blood . . . . . . . . . . . . . . . . . . . . . 18

7 Diagram of valve moving in near-unison with blood . . . . . . . . . . . . . . . . . . 19

8 Tracking a linear reference trajectory with goal time of 0.25 seconds . . . . . . . . 23

9 Tracking a linear reference trajectory over all goal times . . . . . . . . . . . . . . . 23

10 Tracking a step trajectory with goal time of 0.25 seconds . . . . . . . . . . . . . . . 24

11 Tracking a step trajectory over all goal times . . . . . . . . . . . . . . . . . . . . . 25

12 Tracking a step trajectory with measurement noise for Tgoal = 0.25 s . . . . . . . . 27

13 Tracking a step trajectory with measurement noise for all goal times . . . . . . . . 27

14 Tracking a goal time of 0.25 s with a sampled controller at various frequencies . . . 28

15 Tracking a goal time of 0.25 s with a sampled controller at 10 Hz . . . . . . . . . . 29

16 Tracking a goal time of 0.25 s with a sampled controller at 100 Hz . . . . . . . . . 29

17 Tracking a step trajectory with a sampled controller at 100 Hz for all goal times . 30

18 Tracking a step trajectory with a sampled controller at 100 Hz for all goal times
with noisy measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

19 Tracking a step trajectory with a sampled controller at 100 Hz for a 0.25 second
goal time with noisy measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

20 Closure time of valve at a variety of sensitivities for Tgoal = 0.25 s for an event-
triggered controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

21 Number of changes in control action for Tgoal = 0.25 s at a variety of sensitivities
for an event-triggered controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

22 Tracking a step-trajectory with an event-triggered controller with a sensitivity of
0.075 for all goal times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

23 Tracking a step-trajectory with an event-triggered controller with a sensitivity of
0.075 for Tgoal = 0.25 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

24 Gain as a function of θ in MATLAB’s ‘place’ command . . . . . . . . . . . . . . . 35

25 Residuals of polynomial fit for k(θ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

26 Distribution of control actuation times . . . . . . . . . . . . . . . . . . . . . . . . . 36

5



List of Tables

1 Physical parameters of aortic valve and blood . . . . . . . . . . . . . . . . . . . . . 15

2 Controller results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6



1 Introduction

1.1 Motivation

To pump blood effectively throughout the body, the human heart maintains a complex network of
fluid flow within its four chambers. The aortic valve, which separates the left ventricle from the
aorta, is a crucial element of a fully functioning heart. This valve effectively retains blood in the
left ventricle until the pumping heart forms a pressure gradient between the left ventricle and the
ascending aorta, causing the valve to open [24]. After this, blood flows into the aorta, where it
is then dispatched to the rest of the body. When this ejection is complete, the aortic valve must
close until the heart is ready to pump again. The closing of this valve is a complex and widely
disputed process, but research has shown that the formation of vortices in the left ventricle during
pumping plays a role in optimizing the closure of the valve (see: [24; 34]).

In recent years, extensive developments have been made in the field of totally artificial hearts.
These are ventricular assistance devices that are designed to fully replace the human heart. Based
on the observed links between blood vortices and the closure of the aortic valve in the human heart,
this paper will assess the feasibility of a vortex-driven closure mechanism for the aortic valve in an
artificial heart. Such mechanisms have been proposed before, most notably in a patent from 1975
[9], but no publicly available research on this topic can be found.

1.2 Problem Definition

The goal is to i) model the closure of the aortic valve under the forces of a blood vortex and ii)
control this closure through discrete-time modification of the vortex parameters.

The aortic valve is composed of three, equally-sized leaflets which move independently. Only one
leaflet of the valve is considered, with rotational motion about a fixed end. The leaflet is immersed
in the blood flow.

Figure 1: Valve in vortex flow

The valve starts in an upright position θ0 = π/2, and the goal is to steer the valve to θTgoal
= 0

at time t = Tgoal through controlling the circulation Γ of the vortex flow. Controlling Γ alters the
rotational velocity of the vortex according to the Navier-Stokes equations.

Because real-world control systems operate in discrete-time, the controller must function in discrete-
time and be robust to measurement noise in order to be feasible to implement. Computational
limitations of on-board hardware must also be considered.
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1.3 Impacts of Solution

The outcomes of the project are highly relevant to the design of totally artificial hearts. With
confirmation that a controller can achieve success in closing the valve, those designing artificial
hearts can begin exploring designs which utilize this method. Closing the aortic valve using blood
vortices has benefits over possible mechanical closure mechanisms because i) the vortices will likely
occur naturally due to cavity geometry and pressure gradients, as they do in the human heart, so
existing energy may be available to be harnessed for this purpose and ii) the vortices will aid in
cleansing the left ventricle of calcium buildup and plaque [9]. To fully evaluate the solution from
an engineering perspective, a triple bottom line analysis will be performed in Section 6.

1.4 Project Constraints

Due to the nature of the problem, several constraints are imposed on possible project solutions. In
many novel controls applications, controller properties are discussed in continuous time. Because
the controller in this setting will be working inside an artificial heart, likely using an embedded
CPU, the sample rate at which the controller operates will likely be too slow to make the assumption
that continuous time solutions will apply. For this reason, this controller will be analyzed in the
context of discrete-time control, with the goal being to evaluate the ability of the control system
to be controlled in an environment in which computational constraints are imposed. Further
constraints imposed by the physical system are discussed in Section 4.1.

2 Background and Literature Review

In order to both approach and contextualize the research presented in this paper, a variety of
sources from academic literature were consulted. The problem that will be tackled involves mod-
elling the human heart, controlling fluid flow, and controlling a system in discrete-time. Resources
on each of these topics were explored and used to inspire and inform the model and controller
design.

2.1 Fluid Dynamics in Left Ventricle

Because of the importance of the aortic valve and left ventricle in the heart, much research has been
done on the flow of fluid through these components, both through simulations and through imaging
of blood flow in actual patients. Research in this field has lead to the successful development of
ventricular assistance devices and existing total artificial hearts. Existing research has evaluated
the vortices present within the left ventricle, as found by [28] and [10]. Further, in [41] the fluid
flow in the left ventricle was found to affect the motion of the the aortic valve. The work of Ming
and Zhen–Huang in 1986 [34] showed that the vortices formed in the quasi-steady phase of blood
ejection controlled the motion of the aortic valve. The combination of these works substantiated
the project proposal and problem definition by showing that blood vortices may be used to optimize
aortic valve closure.

The team was careful to review existing models when making design decisions. In the work of Wong
et al., MRI images of the left atrium were used to develop a statistical analysis of the vorticity
distribution during distinct cardiac events [25]. A visualization of the velocity field from this model
can be found in Figure 2. Wong et al. determined the most effective tool to model vortices present
in the heart was the Lamb-Oseen vortex.
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Figure 2: Lamb-Oseen vortices used for modelling blood flow in the heart [25]

2.2 Control of Fluids Systems

A wealth of literature exists on controlling mechanical bodies with dynamic motion in an uncon-
trolled fluid flow. For instance, see the work of Roenby and Aref, who studied the chaotic motion
of bodies in idealized two-dimensional point vortices [41]. Also refer to [46], which provides a
constructive method for approaching problems with articulation in fluid flow.

There has also been extensive research on the control of fluid flows around bodies. For instance, the
topic of controlling fluid flow around a cylinder with the goal of reducing drag has been explored
in much detail (see [8] or [33], among others). In cases like these, mechanisms that actuate using
processes such as blowing or sucking around the surface of the cylinder are used to control the
Navier-Stokes equations. This is done with the goal of altering the characteristics of the fluid flow,
particularly in the wake of the body, which contributes to the drag force. In some cases, the bodies
may be rotated as part of the drag reduction processes.

Research on the control of fluid flow around bodies is highly important for the broader problem
of valve closure, as we make the assumption that the fluid flow can be perfectly controlled. This
assumption would need to be justified by research on the control of fluid flow around the valve in
future work. Given the prevalence of blowing/sucking mechanisms in the existing literature, these
present a promising method of altering the vortex flow.

These previously explored problems in the literature fundamentally differ from the one that will
be explored here, as they do not focus on using the motion of the fluid as the control input to
affect the motion of an unactuated body. Research on this topic was not found during the course
of this project.

2.3 Discrete-Time and Event-Triggered Control

In applied mathematics, there is much interest in discrete-time and event-triggered control, due
to the limitations of real-world control systems. Event-triggered control is a control method in
which a controller only actuates at certain times, based on a determination of when actuation is
necessary.

9



Ideally, event-triggered control reduces the quantity of executed control tasks while maintaining
the desired closed loop performance [21]. These principles are generally used in networked control
systems, where computational loads can become intensive. The team used principles outlined by
Heemels, Johansson and Tabuada found in [21] as a basis for the implementation. In their research,
a Lyaponov function is used to define the performance of a controller. This performance metric
allowed for the times at which the control should be applied to be determined separately from the
control calculation. In our paper, this concept is simplified to implement a performance condition
in an event-triggered control algorithm.

3 Model of Valve Closure

Prior to implementing a controller, a model had to be developed for the motion of the valve under
vortex forces. To do this, several simplifications and assumptions had to be made regarding the
behaviour of the fluid vortex, the dimensions of the valve, and the forces affecting the valve’s
motion.

3.1 Methodology

The goal of this project is to answer the following question: is it feasible to close a valve in an
artificial heart using only vortex forces? To attempt to answer this question, we will be exploring
a best-case scenario simulation, since, if such a mechanism is not feasible in a best-case scenario,
it certainly will not work in reality. Defining this best-case scenario means:

• Placing the valve directly in the vortex flow. In the real heart, the interaction of the vortex
and valve can be highly complex due to the time-evolving geometry of the heart, but here
we will simplify it into the most direct interaction possible, with the fixed end of the valve
always sitting 1.4 cm from the vortex core, fully immersing the valve.

• Choosing valve parameters that offer maximum benefit. In human hearts, there can be large
variations in the properties of the aortic valve; here, the optimal values of those variations will
be used to provide maximal force/acceleration on the valve (e.g. minimal weight, maximum
surface area, etc.). In an artificial heart, these parameters will be decided upon during
the design process, and so the freedom to make these parameter decisions will depend on
other design constraints, such as available material, machining capabilities, and interfacing
requirements with other components.

• Allowing the circulation of the vortex to be controlled freely and exactly. In real hearts, the
circulation of the vortex is determined by many factors, such as the pressure gradient entering
the aorta, the geometry of the heart, and the heart rate of the patient. Here, we assume that
a controller in the artificial heart has full control over this circulation.

• Ignoring the impact of the valve on the vortex. In reality, the vortex flow will have complex
interactions with the valve, being slowed down upon impact and creating cascading effects
on the overall fluid motion in the system; here, we ignore these effects, allowing the vortex to
push the valve without being impeded by it. This idealizes the forces being extracted from
the vortex on the valve.

This last point will be addressed further, due to the major implications of this assumption. Firstly,
due to computational limitations, this project had to be approached strictly using the Navier-
-Stokes equations, rather than applying Computational Fluid Dynamics (CFD), which uses finite
element analysis to predict fluid motion. While the Navier-Stokes equations can be coupled to rigid
body dynamics, this process extends beyond the abilities of the members of this project, and would
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limit the chance that the problem at hand could be solved with the given time-frame and resources.
Even with a Navier-Stokes approach, many papers still complete their simulations through a CFD
computation (e.g. [18], and related literature). Therefore, based on these limitations in approach,
simplifications had to be made to ensure the problem could be solved given the logistical project
constraints.

By analyzing the vortex motion in other studies on the heart, such as is found in [44] and [38], it
can be seen that the rotational motion of the blood vortices in the left ventricle persists throughout
the valve closure phase. While there are local impacts on the flow at the valve surface, the overall
flow region of interest generally displays vortex characteristics. Furthermore, while the effects of
the valve on the local vortex flow will result in cumulative effects over the course of the closure,
the time interval in which this process occurs is very small (around 0.25 seconds) and the speeds
quite slow (less than 0.5 m/s), and so these cascading effects will have less time to accumulate
than in more general, unbounded-time scenarios. Lastly, we can observe that the most important
interaction between the vortex and the valve will be when the vortex is strongest, which is at the
initial time stage. Much of the valve’s motion will be determined by the force of the initial impacts
with the vortex as it forms, and subsequent effects of local flow abnormalities should be small
compared to the force of this impact.

Prior to the valve fully closing, at each time step this situation can be thought of as being similar to
a fixed airfoil with a large angle of attack in a fluid flow; this setting has been examined extensively
in the literature, and results show that the airfoil has limited upstream effects on the flow [48].
Therefore, the majority of the fluid effects of the flow interaction should occur in the wake of the
valve. General wake effects are accounted for as part of the experimentally-derived drag coefficient
method which will be used to calculate friction drag, and so they are partially incorporated in the
force calculations, although the pressure effects of the wake will not be considered in this project.

Because of these limitations and justifications, the effects on the fluid flow of interacting with
the valve are not modelled. The fluid model is left as only evolving as a function of time and
position. While this turns out, admittedly, to give a very simple control system, this was not
known at the outset of the project, as existing research on this topic was not available. If the
authors were to approach this problem again, focusing exclusively on modelling the coupling of
the motion between the valve and the vortex would have likely provided more fruitful research,
although less meaningful to evaluating the overall problem of valve closure in artificial hearts, which
requires controller analysis. Ultimately, the authors were tasked with deciding between making
broad simplifications in order to tackle the engineering problem from start to finish, or reducing
the simplifications but only focusing on one mathematical facet of the problem statement; in order
to provide engineering insight in addition to mathematical exploration, it was decided that the
entire problem should be investigated, albeit in a simplified form.

An additional limitation of this method is that, by focusing on this ideal scenario, we will only
be able to comment on whether it is generally possible to control the valve closure using vortices,
and not if it is probable. This is because the effects of the assumptions are difficult to quantify in
magnitude.

While not possible for this project, an alternative approach to this problem would be to use CFD
methods to model the flow, and then attempt to simplify the observed dynamics into a closed-form
expression which can be used to develop a controller. Such a method would be superior in terms
of model accuracy, but it is unclear whether developing a real-time controller using these methods
would be possible, as CFD simulations are extremely computationally expensive and the valve
closure is a very fast process.
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3.2 Vortex Model

The Lamb-Oseen vortex was chosen to model the blood vortex in the left ventricle. The Lamb-
-Oseen vortex is a solution to the Navier-Stokes equations that portrays a vortex with purely
rotational motion that decays due to viscosity as one moves out from the vortex core. The Lamb-
Oseen vortex was chosen to model this scenario due to the resemblance of the Lamb-Oseen flow field
to digital imaging of fluid flow in the left ventricle, as well as because blood has a non-negligible
viscosity whose effects should be considered. This decision is further supported by the work of
[25], who used Lamb-Oseen vortices to model blood motion in the left atrium.

Figure 3 shows a comparison between a vector field plot of a Lamb-Oseen vortex and an echocar-
diographic image of blood flow in a human heart.

(a) Lamb-Oseen vortex [26] (b) Fluid flow in left ventricle [38]

Figure 3: Selection of Lamb-Oseen vortex

The Lamb-Oseen vortex is defined by the fluid velocities in the flow field, which in polar coordinates
are:

vr = 0, vθ =
Γ

2πr
g(r, t), vz = 0,

where Γ is the circulation of the vortex, and g(r, t) is given by:

g(r, t) = 1− e−r
2/4νt,

where r is radius, t is time, and ν is kinematic viscosity.

In this vortex, only the z-axis has non-zero vorticity (i.e. the spinning of the fluid only occurs
around the z-axis), while the pressure field provides the centripetal force necessary to spin the
fluid around the vortex core.

For this vortex, it is assumed that the fluid is Newtonian (i.e. the viscosity ν is constant), the
flow is incompressible (i.e. the density ρ is constant), and the flow is completely orthogonal to the
z-axis.

3.2.1 Verifying Satisfaction of Navier-Stokes Equations by Lamb-Oseen Vortex

For completeness and in order to better understand the fluid behaviour, the Navier-Stokes equations
are evaluated using the Lamb-Oseen vortex velocities to determine the pressure distribution in the
flow and to ensure the continuity condition is satisfied. While the Lamb-Oseen vortex is not an
uncommon solution in modelling vortices, many papers simply refer to the original German paper
from 1912 by C.W. Oseen [37], and full, explicit verifications of the results are not readily available
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online.

In two-dimensional flow orthogonal to the z-axis, the unforced Navier-Stokes equations in polar
coordinates are given by:

∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
− v2

θ

r
= −1

ρ

∂P

∂r
+ ν

(
∇2vr −

vr
r2
− 2

r2

∂vθ
∂θ

)
(1)

∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ
− vrvθ

r
= −1

ρ

1

r
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(
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+
2

r2
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)
(2)

1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

= 0 (3)

In these equations, P is pressure, ρ is density, and ∇2 denotes the Laplace operator.

The components of vorticity are given by:

ωr = 0, ωθ = 0, ωz =
1

r

∂

∂r
(rvθ)−

1

r

∂vr
∂θ

Here, ωi is the vorticity of the fluid in the i direction. Vorticity describes the local spinning motion
of the fluid near a point.

Equation (1) can be solved using the defining velocities for the Lamb-Oseen vortex:

−v
2
θ

r
=
−1

ρ

∂P

∂r

This gives the necessary pressure gradient with radius in the Lamb-Oseen vortex: ∂P
∂r = ρ

v2θ
r .

Equation (2) reduces to:

∂vθ
∂t

=
−1

ρ

1

r
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4νt

)2

e−r
2/4νt − 2

4νt
e−r

2/4νt +
2

4νt
e−r

2/4νt

)

0 =
∂P

∂θ

Thus giving the pressure gradient with angle in the Lamb-Oseen vortex as zero.

The third equation, known as the continuity equation, is satisfied. Both partial derivatives are
zero, giving 0 = 0. Therefore, the Lamb-Oseen vortex satisfies the Navier-Stokes equations when
the pressure distribution is as derived above.

Applying the vorticity equations, the vorticity about the z-axis becomes:

ωz(r, t) =
Γ

4πνt
e−r

2/4νt

The vorticity vector for the flow is then: ω = (0, 0, Γ
4πνte

−r2/4νt)

The last step of this validation is to confirm that Γ, the parameter used in defining vθ, is in fact
the circulation of the vortex. To do this, the relationship between circulation and vorticity can
be used. Circulation is the total amount of vorticity orthogonal to a given area. If this area is
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taken to be A, defined by the boundaries r1, r2, θ1, θ2, and a normal vector n = (0, 0, 1) which is
orthogonal to the x-y plane, then the circulation through A, Γ̄ is:

Γ̄ =

∫
ω · ndA

=

∫ r2

r1

∫ θ2

θ1

rωz(r, t)drdθ

=

∫ r2

r1

(θ2 − θ1)rωz(r, t)dr

=

∫ r2

r1

Γr(θ2 − θ1)

4πνt
e−r

2/4νtdr

= Γ
(θ2 − θ1)

2π

∫ r2

r1

r

2νt
e−r

2/4νtdr

= Γ
(θ2 − θ1)

2π

[
−e−r

2/4νt
]r2
r1

If we expand our area A to encompass the entire vortex flow, with r1 → 0 and r2 →∞, as well as
θ1 = 0, θ2 = 2π, then Γ̄ → Γ. Therefore, the circulation of the Lamb-Oseen vortex is given by Γ,
as expected.

Finally, we note that to find the pressure difference between two points of distance r1 and r2

from the vortex core, we can use the pressure gradients derived here. To do this, we compute the
integral:

P2 − P1 =

∫ r2

r1

ρ
v2
θ

r
dr

=

∫ r2

r1

ρ
Γ2/(4π2r2)

r
(1− e−r

2/4νt) dr

=

[
−ρ Γ2

8π2r2

]r2
r1

−
∫ r2

r1

ρ
Γ2

4π2r3
e−r

2/4νt dr

=

[
−ρ Γ2

8π2r2

]r2
r1

+

[
e−r

2/4νt

2r2
+

∫∞
−r2 e

−z/z

8νt

]r2
r1

3.3 Parameters of Valve and Blood

The aortic valve is a tricuspid valve, meaning it is composed of three flat leaflets (see Figure 4).
Each of these leaflets can be individually modelled as a rotating body with a fixed trailing edge.
In this project, the tricuspid nature of the valve will be simplified and a single leaflet will be used
to model one third of the valve. In the rest of this paper, ‘valve’ will be used to mean the leaflet
of the aortic valve being simulated.

To keep the analysis in a feasible realm given the available resources, the vortex flow in the left
ventricle was simplified to be uniform in the z-direction (using the Lamb-Oseen vortex), and so by
orienting the leaflet with the rotational flow, the problem simplifies to a two-dimensional one.

One may note that in the case of a tricuspid valve, all of the valve leaflets will line up differently
with the vortex flow. For this reason, one might consider using a bicuspid valve in the design of
an artificial heart to simplify the problem. One could also design a variety of combined-closure
mechanisms that use the vortex forces on the valve leaflet placed most directly in the flow to aid
in closing the rest of the valve. Since this project is simply to evaluate the general feasibility of
a vortex-closure mechanism, these complications are left as open problems, and a single leaflet
oriented perfectly in the flow is evaluated.
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Figure 4: Tricuspid nature of aortic valve [32]

To further simplify the problem, rather than the valve leaflet having a side-face that is a third of a
circle, it will be simplified as having a triangular face that varies from a depth of 2π

3 L at its fixed
end to a depth of 0 at its far end, where L is the radius of the aortic valve.

Data regarding the physical parameters of the aortic valve was collected, and is summarized in the
table below. Data regarding the relevant fluid properties of blood is also included.

Model Parameter Value Units Source
Length of Leaflet 0.012 m [30]
Thickness of Valve 0.0014 m [49]
Left Ventricle Diameter 0.052 m [36]
Valve Weight 1.6 g [23]
Density of Blood 1060 kg/m3 [2]
Dynamic Viscosity of Blood 2.4× 10−6 m2/s [2]

Table 1: Physical parameters of aortic valve and blood

One of the most notable fluid properties of blood is that it is a non-Newtonian fluid [6], meaning
the viscosity of blood is a function of the stress acting on it, and as a result blood does not conform
to Newton’s Law of Viscosity. The Navier-Stokes equations are still valid for non-Newtonian fluids,
although the computations become more complex; in this analysis, we do not explicitly account
for the non-Newtonian effects of blood, as the Lamb-Oseen vortex assumes constant viscocity.

It should also be mentioned that blood has visco-elastic properties due to the presence of red blood
cells, meaning it may store and release energy when acted upon by a force [7]. This property is
ignored due to the complexity of these effects.

3.4 Forces on Valve and Motion Update

The two directions of force exerted by a two-dimensional vortex on a body are lift (y direction)
and drag (x direction). We will refer to both of these forces as ‘drag forces’. The two causes of
these forces are:

• Forces caused by the pressure distribution around the valve (pressure drag).

• Forces caused by shear friction between the fluid and the valve (friction drag).

We neglect compressibility in this project, since the maximum flow speeds in this region of the
heart are 4.7± 0.9 m/s [13]. Likewise, there will be no forces from shock waves to consider.
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The forces acting over some surface area on the valve will then be:

Fx =

∫ (∫
P cos (φ) + τW sin (φ)dx

)
dz

Fy = −
∫ (∫

P sin (φ) + τW cos (φ)dy

)
dz

Where F is force, P is pressure, φ is the angle of action of the fluid on the body, and τW is the
shear force between the fluid and the body.

The first terms in the force integrals correspond to the pressure forces, while the second terms
correspond to the friction forces. Both forces will be evaluated separately. Given the fixed position
of the valve’s trailing edge and its purely rotational movement, the moment induced by the forces
on the valve will be of interest rather than the forces themselves.

3.4.1 Pressure Drag

To calculate the moment exerted by the pressure field on the valve, a numerical integration is
performed. Starting at the fixed end of the valve, and moving up in steps of size l, the pressure
force on each section of the valve is calculated. This force then produces a moment on the valve.
The moment on each section is given by the following equation:

Mpressure(d) = (Ptop(d)− Pbottom(d))(l ∗ h ∗ d)

Where Ptop(d) − Pbottom(d) is the pressure difference between the top and bottom points rT and
rB , which are the distances from the top and bottom of the valve at point d to the vortex core.
d is the distance from the fixed end of the valve to the centre of the segment the calculations are
being done on. h is the depth of the valve at point d. For further clarification, see Figure 5.

Figure 5: Diagram of valve during numerical integration
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When a numerical integration over the length of the valve is completed, summing the moments
from each segment gives the total moment on the valve from pressure forces.

3.4.2 Friction Drag

In addition to the pressure drag, the friction drag must also be considered. Since the shear force
of the fluid, particularly in non-Newtonian fluids such as blood, can be complicated to calculate,
the friction drag will be calculated using drag coefficients rather than from the integral definition.
Drag coefficients are experimentally-determined values for various shapes that indicate what the
expected friction drag force on the shape will be. This force is predicted by the equation:

D =
1

2
cD ρAV

2.

Where cD is the drag coefficient of the body, A is the effective area of the body (generally the
front-facing area), and V is the relative velocity of the body to the fluid flow. Note that this
equation is not valid for particles moving at very low speeds; in this case, the exponent on V must
be 1. In this project, the valve has significant dimensions and will be in flow moving at speeds up
to 0.5 m/s, so the standard version of the equation is used.

Each segment of the valve moves in both the x and y directions, in a fluid flow that is also moving
in both the x and y directions. Thus, the relative velocity of the body to the fluid must be
calculated in both directions, and the drag forces in x and y can then be calculated and converted
into moments.

Since the relative velocity of the valve to the fluid varies as one moves along the valve, a numerical
integration is completed starting from the fixed end of the valve. Small, approximately rectangular
pieces of the valve are considered individually. At each piece, the velocity of the vortex flow in the
x and y directions is calculated. In addition, the velocity of the segment in the x and y directions
is also calculated using the angular velocity of the valve multiplied by the radial distance from the
fixed edge. The relative velocity is then computed.

Given the shape of the valve, each small, approximately rectangular segment has A = lh where
l and h are the length and height of the segment, respectively. Given the dimensions of these
segments, a drag coefficient of 1.9 is used based on reference tables [35].

For these simulations, the drag force is calculated using the fluid velocities at the bottom face of
the valve, since it is the face that is directly interacting with oncoming fluid given the direction of
motion for closure. The fluid velocities are essentially the same at both the top and bottom faces
due to the small width of the valve.

The drag in the x-direction on a segment of the valve is calculated as:

Dx =
1.9

2
ρ (l ∗ h)(Vx − Ux)(−Vx + Ux)

Where Vx is the velocity of the fluid in the x-direction and Ux is the velocity of the valve in the
x-direction. The equation is identical for the y-direction. Note that the sign difference between
the last two terms is used to account for the direction that the drag force acts in.

The total moment from drag on the segment is then calculated by:

Mfriction(d) = (−Dx sin(θ)−Dy cos(θ))× d
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Here the variable θ is oriented as in Figure 1.

3.4.3 Motion Update

To model the rotation of the valve, the total moment about the fixed base resulting from the
pressure and friction forces is calculated by Mtot = Mpressure + Mfriction. The dynamics of the
system are then updated using an iterative position-update process applied in discrete-time:

θ̈(k) =
Mtot

I

θ̇(k) = θ̇(k − 1) + θ̈(k)dt

θ(k) = θ(k − 1) + θ̇(k)dt

Where θ is the angle of the airfoil, Mtot is the total applied moment, dt is the time step of the
simulation, and I is the rotational moment of inertia of the airfoil.

Given the triangular shape of the valve section, the rotational moment of inertia of the valve about
its base is I = 1

8mL
2.

To test that the drag model was functioning as desired, different settings were simulated. To
match the theoretical model, the simulations should result in the following properties: if the body
is moving in still fluid, the drag should be quadratic with velocity; if the body and the fluid are
moving in the same direction with the same speed, the drag should be zero.

First the valve was given an initial angular velocity of 10 rad/s in a stationary flow field. This
produced the trajectory shown in Figure 6. The angular position of the valve is quadratic with
respect to time, as expected.

Figure 6: Diagram of valve moving in motionless blood

In the second simulation, shown in Figure 7, the valve was given an initial angular velocity of 10
rad/s in a flow field moving at 10 rad/s 0.01 m from the vortex core (i.e. Γ ≈ 0.0628). In this case,
the valve closes along a nearly-linear trajectory in approximately 0.158 seconds. This matches
expectations, given the valve and fluid were moving nearly in unison and started at 1.57 radians.
The slight nonlinear deviations occur due to fact that the Lamb-Oseen vortex has angular velocity
that varies with radius due to viscosity, and so the relative velocity is not zero along the entire
body.
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Figure 7: Diagram of valve moving in near-unison with blood

3.5 Model Validation

Designing this simulation model required several simplifications. Furthermore, physical testing
scenarios, which are often used for validation in fluids dynamics problems, were not accessible.
Because of this, it was crucial to compare the simulation results to real-world results to ensure the
model developed here was sufficiently accurate to continue to the control phase of the project.

A previous study done using magnetic resonance imaging on human patients found the average
angular velocity around the vortex core in the left ventricle was 30.08 ± 9.98 rad/s during valve
closure [28]. In initial simulations using our model with a constant circulation value for the vortex
flow, to close the valve in a time frame of 0.25 seconds (which corresponds to a heart rate of
approximately 120 beats per minute, representing a heart rate between resting and strained), the
maximum angular velocity in the flow field is 13 rad/s. This slight underestimate from our model
is likely caused by the idealized construction used in developing the simulation, with the valve
sitting directly in the vortex flow and not affecting the vortex through physical interactions. With
that said, while the model does not perfectly represent the behaviour of the heart, the values are
in the correct order of magnitude.

A study using CFD methods to simulate the vortices during valve closure in the left ventricle found
that the velocity vectors in the vortex ranged in magnitude from approximately 0 to 0.4 m/s given
a closing time of 0.25 seconds [44]. In our simulation, velocity values given a closing time of 0.25
seconds ranged from 0 to 0.28 m/s. Once again, this slight discrepancy is likely due to the idealized
model being simulated.

Overall the simulated model, which was designed to be an idealized scenario, narrowly underesti-
mated the required motion inside the vortex to close the valve. Because of this success, the model
was determined to be sufficiently accurate to continue to the control aspect of this design problem.

3.6 Model Assumptions and Potential Failures

This model makes many simplifications so that the problem can be tackled using the available
resources and to create the idealized scenario desired for this project. For this reason, the model
may deviate significantly from real behaviour in the left ventricle. Potential major causes of
inaccuracy are listed here:
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• The Experimentally-Derived Approach to Drag. The approach to determining the drag force
in this simulation relies on the accuracy of the drag coefficient method. While this method is
accurate on large scales, it is unclear whether this model breaks down on smaller scales, such
as during the numerical integration over the valve. One would expect the model to break
down at the scale where individual interactions between fluid molecules become significant.
For this reason, a larger numerical integration step size was used to limit these effects, but
it is not guaranteed that the magnitude of the drag force is entirely accurate.

• Neglecting Interaction of Fluid Particles and the Valve. This approach neglects the effects of
the interaction between the fluid and the valve on the vortex flow field. It is assumed that
the vortex flow hits the valve and then passes through it immediately. This assumption was
made to limit the complexity of the problem, since a full model of each fluid particle’s motion
would require CFD, as well as to contribute to the idealized scenario being simulated.

• Location and Orientation of the Valve in the Flow. It is assumed here that the portion of the
tricuspid valve being simulated lies directly in the vortex flow. In a real heart, this is more
complicated, with the geometry of the heart playing a greater factor in where fluid interacts
with the valve. This assumption was made as part of creating an idealized scenario to test
whether it is feasible to utilize vortices to close the valve.

• Vortex Shape. It is assumed that the vortex flow can be modelled as a Lamb-Oseen vortex.
While this assumption was made based on echocardiographic images, it must be noted that
the vortices are not perfectly circular in actual hearts, and so the radial velocity will not
simplify to zero. Accounting for this would create a far more complex model, and creating a
perfect model of the vortex would require extensive study of solutions to the Navier-Stokes
equations and data collection of fluid motion in numerous human hearts. This is beyond the
scope of this project, but we refer readers to [25] for an example of how this might be done.

• Unique Properties of Blood: As mentioned earlier, blood has visco-elastic properties. These
are neglected here due to the complexity of the problem, but these effects may play a role
in blood storing and releasing energy when force is applied and relaxed. Furthermore, blood
is a non-Newtonian fluid, which may cause further deviations since the Lamb-Oseen vortex
does not account for these effects.

3.7 Conclusions on Model

While the model does not perfectly match existing data regarding vortex flow in the left ventricle,
it provides results which are similar to reality. The goal of the model was to simulate an idealized
scenario to evaluate the overall feasibility of a vortex-closure mechanism for the aortic valve. The
model appears to achieve this goal, providing slight underestimates on the required vortex motion
to close the aortic valve when compared to existing results in the literature.

The model could be improved in the future by accounting for any of the assumptions listed in
Section 3.6, or by designing a physical testing scenario to compare the results against.

4 Implementing a Controller

The first stage of this project involved developing a model for the motion of the aortic valve under
the forces of naturally occurring blood vortices. Since one could complete a simulation of this
motion more accurately using CFD, and the computational resources required to do this were not
available, it was decided that the unique capabilities of this simpler model would be explored.

While a CFD model would be more accurate in its predictive capabilities, the intensity of the
simulations makes it very difficult to apply traditional control algorithms in these settings due to
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the computational speed at which the simulations occur (see, for instance, the problem explored
in [50]). Whereas, while the Navier-Stokes approach provided non-linear time-varying dynamics
for our system, these can be linearized and controlled using basic control-theoretic principles.

Additionally, as part of determining the feasibility of a vortex-closure mechanism for an artificial
heart, real-world constraints on the controller capabilities should be applied. These constraints
should reflect actual limitations on system behaviour, sensor accuracy, and controller ability. The
iterative design process for developing such a controller is described here.

4.1 Necessary Criteria for Controller

One of the necessary design criteria for the controller is that the control input Γ should decay
to zero as the valve angle approaches zero. This is a constraint of the physical system, since the
vortex must come to rest when the valve has closed so that incoming blood from the left atrium
can effectively enter the left ventricle.

Secondly, the controller should minimize input perturbations so that the flow in the heart is as
stable and predictable as possible. This means the controller should not see large spikes or highly
noisy signals, since these will cause major disturbances to the flow and may begin to affect other
functions of the left ventricle. The magnitude of these signals should also not result in flow speeds
which exceed 4.7± 0.9 m/s, since this is the expected maximum speed of blood travelling through
the aorta in real patients, and higher blood speeds could result in unforeseen consequences [13].

Lastly, the controller should be able to close the valve over a range of speeds that covers the entire
spectrum of heart rates. Given that a patient’s heart rate should fall between 60 and 220 beats per
minute, this corresponds to valve closure times between 0.1 and 0.5 seconds. A heart rate of 120
beats per minute was chosen as the mean heart rate for evaluation purposes, which corresponds
to a mean valve closure time of 0.25 seconds. This was done in part to match the data from [44]
for comparative purposes. Furthermore, for any given closure, the closure time should not deviate
from the goal time by more than 0.01 seconds; this number is based on natural deviations seen in
the heart [1].

4.2 Controller Design

Let the state of the system be [θ(t), θ̇(t)]T , where θ is the angle of the valve as measured in Figure
1, and θ̇ is its time derivative. The control input for the system will be the circulation Γ of the
vortex, since Γ fully determines the behaviour of the Lamb-Oseen vortex flow (outside of fixed
constants such as ρ and ν).

The goal of the controller will be to bring the valve from an opened position θ0 = π/2 at t = 0 to a
closed position θTgoal

= 0 at a given goal time Tgoal. To do this, two different reference trajectory-
generating methods will applied and compared. These methods will generate trajectories for the
controller to track, with the goal being to generate trajectories that, when tracked by the controller,
result in the necessary criteria from Section 4.1 being satisfied.

4.2.1 Linearizing the System Dynamics

The state space equation for the system can be found by linearizing the system dynamics.

Since the dynamics of θ̈ with respect to Γ are highly complex and nonlinear, several assumptions
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need to be made. These are outlined below:

θ̈(t) =
Mtot

I
(Step 1)

≈ Mpressure

I
(Step 2)

≈
[
−ρ Γ2

8π2r2

]r=midpoint,top

r=midpoint,bottom

Atot
L

3
I−1 (Step 3)

Step 2 comes from neglecting the forces of friction drag, which were determined through simulations
to generally be significantly smaller than the pressure forces. Step 3 comes from neglecting the
second term inMpressure, which is typically quite small, and by simplifying the numerical integration
of the pressure force into calculating the pressures at the midpoint on the top and bottom surfaces,
and then applying these pressures along the entire valve, resulting in a moment which is applied
at L/3 away from the fixed end of the triangular-faced valve.

This equation can then be linearized in terms of Γ. Doing this yields the following state space
representation of the system, linearized about its current position. Note that r is a function of
θ(t).

[
θ̇

θ̈

]
=

[
0 1
0 0

] [
θ

θ̇

]
+

[
0[

−ρ 1
4π2r2

]r=m,t

r=m,b
Atot

L
3 I
−1

]
Γ

4.2.2 Implementing the Control Algorithm

To implement a linear state feedback control algorithm in MATLAB, an error vector is defined:

e(t) = [θ(t)− θd(t), θ̇(t)− θ̇d(t)]T

Where θ is the current angle of the valve, and (θd(t), θ̇d(t)) is a desired trajectory. The linear state
feedback controller will then be some control law of the form Γ(t) = K(θ, t)e(t), where K(θ, t) is
a 1× 2 gain matrix.

At each time stage, the control algorithm computes the gain matrix K. It does this by linearizing
about the current position and time to obtain the A and B matrices from the state space repre-
sentation, and then using the MATLAB ‘place’ command to find a gain matrix which results in
the poles of the system A + BK being in specified locations in the left-half complex plane. An
alternative method to this is discussed in Section 4.6. It should also be noted that in each iteration
of the controller design presented in this section, the locations of these poles were re-adjusted in
an attempt to optimally tune the controller.

Once K is determined, Γ is computed. This control is then applied as the circulation in the valve
closure model, which updates the position of the valve using the dynamics determined in Section
3. The control algorithm is then re-applied until the valve has fully closed.

To prevent the controller from exhibiting undesirable behaviour, a small check is inserted: since
the vortex should only rotate in one direction when closing the valve, Γ is prohibited from being
negative. If a negative Γ is returned by the controller, it is turned to zero. This prevents the
controller from attempting to compensate for pushing too hard by reversing the flow direction.
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4.2.3 Tracking a Linear Trajectory

First, the controller was given the task of tracking a linear trajectory. That is, a trajectory in
which the valve starts at t = 0 in an open position with θd = π

2 , θ̇d = 0, θ̈d = 0, and then proceeds
with:

θd(t) =

{
π
2 −

(
π
2

) (
t

Tgoal

)
, 0 ≤ t ≤ Tgoal

0, t > Tgoal

In the equation above, Tgoal is the specified desired closure time for the valve.

Figure 8: Tracking a linear reference trajectory with goal time of 0.25 seconds

Figure 9: Tracking a linear reference trajectory over all goal times

The pole locations for the control algorithm were tuned to provide optimal response at the mean
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goal time Tgoal = 0.25 s. The results for the trajectory of θ(t) for Tgoal = 0.25 s are plotted in
Figure 8. The simulation was run using a time step of 0.001 seconds.

In this case, the valve is able to close in 0.249 seconds. The rise in tracking error that occurs around
0.065 seconds is due to the effects of drag (which the controller does not account for) becoming
significant as the valve speeds up. The valve then stabilizes near the angular velocity of the vortex,
and the controller applies a last-second adjustment to close the valve in time.

The ability for the controller to track linear trajectories was then evaluated over a range of Tgoal

from 0.1 to 0.5 s. This is plotted in Figure 9.

The controller is quite accurate at tracking a range of trajectories, despite being tuned specifically
for performance at Tgoal = 0.25 s. The root mean squared error for the closure time over this range
is 0.0077 seconds, with the maximum deviation between goal time and closure time being 0.021
seconds when the goal time is 0.1 seconds. The controller is least accurate at very fast closure
times.

4.2.4 Tracking a Step Trajectory

In search of better performance of the controller and more desirable input behaviour, a step tra-
jectory was also analyzed.

With the step-trajectory, the error is defined as e(t) = [θ(t) − θd(t), 0]T . Defining the error in
this manner gives the added advantage that the controller does not need to observe the angular
velocity of the valve to function, and is done since the reference trajectory has a constant angular
velocity of zero.

A variety of pole locations were tested to determine the fastest the valve could close while exhibiting
stable input behaviour. It was found experimentally that this limit was 0.144 s.

Figure 10: Tracking a step trajectory with goal time of 0.25 seconds

Given this limit, a step trajectory is generated using the following equation, given some desired
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closing time Tgoal:

θd(t) =

{
π
2 , 0 ≤ t < Tgoal − 0.144,

0, t ≥ Tgoal − 0.144

I.e. the controller waits until it is 0.144 seconds away from needing to be closed, and then closes
in 0.144 seconds. The behaviour is identical across all goal times, and the controller can perfectly
track all goal times that are greater than or equal to 0.144 seconds.

Figure 10 shows a visualization of the controller perfectly tracking a goal time of 0.25 seconds.

The closure time results for goal times from 0.1 to 0.5 seconds are plotted in Figure 11.

Figure 11: Tracking a step trajectory over all goal times

4.2.5 Comparing Control Methods

There are trade-offs between the two reference trajectory-generating methods described above. To
continue with the project, one of these methods must be selected.

The linear trajectory method is characterized by:

• Strong ability to meet all goal times

• Lower magnitude control inputs

• Non-zero circulation near goal time

• Requires angular position and velocity of valve to be known

The step trajectory method is characterized by:

• Perfect ability to meet all goal times greater than 0.144 s

• Higher magnitude control inputs

• Circulation decays steadily to zero near goal time
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• Only requires angular position of valve to be known

To select a method, each point must be addressed individually.

The linear trajectory can track all goal times to within a small error. The step trajectory is
unable to track the quickest goal times near 0.10 s with good accuracy, but has better accuracy
over all goal times greater than 0.144 seconds. A maximum valve closure time of 0.144 seconds
corresponds to an approximate maximum heart rate of 208 beats per minute. For any patient over
the age of 20, 208 bpm should be higher than the maximum bpm achievable by their natural heart
(approximately 200 bpm) [43]. Thus, only at extreme heart rates is the step trajectory worse than
the linear trajectory. These heart rates are well outside the scope of care for a general artificial
heart patient, therefore the step trajectory is superior in terms of accuracy.

The linear trajectory method uses significantly smaller circulation inputs to close the valve than the
step trajectory method. This will require less force to impel, and thus may be easier to implement
in an artificial heart.

The step trajectory satisfies the goal of having the control input decay smoothly to zero, while the
linear trajectory does not. This makes the step trajectory method more prepared for the incoming
blood flow from the left atrium when the valve has fully closed.

To track the linear trajectory, the controller requires knowledge of the angular velocity of the valve.
To track the angular trajectory, since error in angular velocity is not incorporated, only an angular
position sensor is needed. This means fewer electronic components needs to be incorporated into
the artificial heart design.

Therefore, considering the outlined controller goals, the step-trajectory method appears superior,
since it is better than the linear method in 3 of the 4 points discussed above.

It should be noted that a variety of different reference trajectory-generating techniques could be
tested in an attempt to improve performance. The two methods explored here were selected
initially due to their simplicity. Since the step-trajectory method performed near-perfectly, more
complex solutions were not explored.

4.3 Adding Measurement Noise

The controller requires knowledge of the angular position of the valve to function. In an artificial
heart, this angle can be measured using a variety of sensors, all of which will involve sensor noise.

To capture the effect of using real-world sensors on the controller, normally distributed noise was
added to the angular measurement θ. Since the sensor implemented in the artificial heart will need
to have a long life with minimal maintenance, will be in constant contact with fluid, and will be
small enough to fit on the valve, it may have errors greater than general standards in the industry.
For this reason, a standard deviation of ±0.02 radians was used. For reference, the smallest angular
measurement device sold by AMS has a standard deviation of approximately ±0.002 radians if the
sensor has no bias and is used with standard gain settings [3]. The errors added here are chosen to
be one order of magnitude larger to reflect a worst case scenario for error, to check if the controller
is robust enough to achieve an acceptable degree of accuracy in an extremely noisy setting.

The noise effects were first added to the mean scenario, where Tgoal = 0.25 s. In the simulation
with noise shown in Figure 12, the controller closes the valve in 0.253 s. Over 100 simulations
with a goal time of 0.25 seconds, the greatest observed deviation from the goal time was 0.004
seconds and the root mean square deviation was 0.001 seconds. These are well within the specified
controller criteria.
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Figure 12: Tracking a step trajectory with measurement noise for Tgoal = 0.25 s

Simulations over all goal times from 0.1 to 0.5 are presented in Figure 13.

Figure 13: Tracking a step trajectory with measurement noise for all goal times

In the round of simulations pictured in Figure 13, the greatest deviation from the goal time (for
goal times of 0.15 s and above) was 0.006 s, which occurred at Tgoal = 0.30 s.

Therefore, the controller appears sufficiently robust to noise given the controller criteria.
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4.4 Implementing Controller Sample Rate

Another effect of implementing controllers in the real-world is that they can not function in con-
tinuous time. Controllers will actuate based on a sample rate, only updating control actions in
discrete time.

Because this system will be implemented using small electronic components, and the artificial
heart should function without external hardware, the control computations will need to be done
on an on-board computer. For this reason, the sample rate may be quite slow, and the slowest
sample rate that results in acceptable performance will be evaluated here to provide a lower limit
for necessary computational speed.

Holding the goal time steady at 0.25 s, a range of sample frequencies were tested, from 1000 Hz
(the simulation frequency) to 1 Hz, with no measurement noise in the system. The closure times
are plotted in Figure 14. This figure gives a preliminary indication that the controller does not
experience major deviations from the goal time at a sample rate of 10 Hz.

Figure 14: Tracking a goal time of 0.25 s with a sampled controller at various frequencies

In Figure 15, the full results for a simulation with a sample rate of 10 Hz is plotted.

By visualizing the full trajectory, one can see the problems that arise with sample frequencies as
slow as 10 Hz. The controller only applies one very strong control, which it applies for 0.1 seconds.
This results in the vortex lasting 0.05 seconds longer than desired, despite the valve fully closing,
which could have many unintended consequences on the functioning of the heart. The input also
does not decay smoothly to zero as the valve closes. Therefore the behaviour of the controller is
unacceptable at a sample frequency this slow.

Now, consider a sample rate of 100 Hz. The results for a simulation for Tgoal = 0.25 s are shown
in Figure 16. In this simulation, the controller closes the valve in 0.209 seconds.
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Figure 15: Tracking a goal time of 0.25 s with a sampled controller at 10 Hz

Figure 16: Tracking a goal time of 0.25 s with a sampled controller at 100 Hz

By adjusting the reference step trajectory-generating algorithm for the 100 Hz sample rate, the
controller can be designed to close the valve perfectly over all goal times. With a sample rate of
100 Hz, the step trajectory-generating algorithm from Section 4.2.3 only needs to be adjusted to
be offset by 0.109 s, rather than 0.144 s.

When this adjustment to the trajectory is completed, the controller is able to perfectly track all
goal times in a noiseless environment, as is shown in Figure 17.
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Figure 17: Tracking a step trajectory with a sampled controller at 100 Hz for all goal times

When noise is incorporated into this simulation, the deviations become more severe than in Section
2.3. One example simulation over all goal times is shown in Figure 18.

Figure 18: Tracking a step trajectory with a sampled controller at 100 Hz for all goal times with
noisy measurements

Therefore, while the sampled controller initially improved on the original controller by broadening
the viable goal times down to 0.1 seconds, the sampled controller is significantly less robust to
noise. The maximum deviation from the goal time in this round of simulations over all goal times
was 0.014 seconds, over double the maximum deviation over all goal times seen in the original
controller.

For a goal time of 0.25 seconds, sample results appear in Figure 19. In the simulation pictured, the
valve closes in 0.244 seconds. Over 100 simulations for a goal time of 0.25 seconds, the maximum
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deviation from the goal time was 0.014 seconds. The root mean square deviation from the goal
time was 0.0019 seconds.

Figure 19: Tracking a step trajectory with a sampled controller at 100 Hz for a 0.25 second goal
time with noisy measurements

The sampled controller at 100 Hz results in maximum deviations that are beyond the acceptable
limit. While faster sampling would have resulted in lower error, 100 Hz was chosen as an upper
limit due to the speed at which the MATLAB controller computation occurs (approximately 55
Hz) and due to possible limitations of communication speed between the sensors, actuator, and
controller. These limitations of controller computation are further discussed in Section 4.6.

Therefore, 100 Hz is selected as the sampling frequency, with faster frequencies requiring controller
and actuator capabilities which may be unrealistic, and slower frequencies resulting in unacceptable
sensitivity to measurement noise and undesirable input behaviour.

4.5 Designing an Event-Triggered Control Algorithm

In reality, we may wish to implement controls less frequently than at each sample time. Because
the control can not be applied continuously, it may be advantageous to apply as few unique control
actions as possible. This is because the mechanism that actuates the control inputs in an artificial
heart will disturb the fluid. Every time the controller adjusts how it pushes the blood, this will
cause perturbations, potentially making the real fluid behaviour deviate further and further from
the model, which assumes the fluid flows in a perfect vortex. If the controller were to make
a new decision at every sample time, particularly given the measurement noise in the system,
this could lead to erratic fluid behaviour, making the model become invalid and rendering the
controller entirely ineffective. For this reason, a controller which only applies a few unique controls
is desirable, since this will result in the model predicting the system more accurately, and thus the
controller working more effectively.

To account for this, an event-triggered control algorithm is applied. The algorithm works by
running the controller at each sample time. The controller then evaluates whether the control it
wants to apply at the current sample time is sufficiently different from the control it applied at the
previous sample time, where being sufficiently different is determined by evaluating whether the
magnitude of the difference is greater than a preset “sensitivity”. In this case, we also implement a
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threshold of 0.01 above zero where all desired inputs below this get mapped to zero; this prevents
situations in which the controller wishes to turn the actuator off, but the current control is smaller
than the sensitivity. This threshold was chosen experimentally based on optimal behaviour.

In Figure 20, the closure time given Tgoal = 0.25 seconds (and no measurement noise) is plotted
for a variety of sensitivities. Note that the simulation window ended at 1 second, and so the tests
which failed to converge within 1 second are clustered at this time.

Figure 20: Closure time of valve at a variety of sensitivities for Tgoal = 0.25 s for an event-triggered
controller

Figure 21 shows the number of times the controller changes the input for a variety of sensitivities.
In these simulations, at a sensitivity of 0.075 the controller closes the valve in 0.251 seconds and
only applies 3 different control actions.

Figure 21: Number of changes in control action for Tgoal = 0.25 s at a variety of sensitivities for
an event-triggered controller
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The 0.075 sensitivity appears to minimize control changes while maintaining accuracy, and so it
was investigated further. When one includes measurement noise, the deviations become more
severe, as displayed in Figure 22. In this case, the furthest deviation from the goal time was 0.048
seconds which occurred when the goal time was 0.47 seconds.

Figure 22: Tracking a step-trajectory with an event-triggered controller with a sensitivity of 0.075
for all goal times

Figure 23 shows a sample result for a goal time of 0.25 seconds. In the pictured simulation, the
closure time was 0.245 seconds. Over the course of 100 simulations, the maximum deviation from
the goal time was 0.043 seconds, the root mean square deviation was 0.0116 seconds, and the
controller always applied 3 different controls. These deviations are well beyond the 0.01 second
maximum deviation limit. Therefore, while the 0.075 sensitivity appeared promising in contrast
to other sensitivities in a noiseless setting, it was too sensitive to noise to meet the controller
requirements.

Figure 23: Tracking a step-trajectory with an event-triggered controller with a sensitivity of 0.075
for Tgoal = 0.25 s
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In contrast, using a finer sensitivity of 0.025 for a goal time of 0.25 seconds gives better results. As
with the sampled controller, to achieve these results the reference trajectory generating method
was altered, with the offset changing from 0.109 s to 0.101 s. Over 100 simulations, this controller
displayed a maximum deviation of 0.012 seconds, with a root mean square deviation of 0.0021 sec-
onds. These deviations are, essentially, identical to those seen in the standard sampled controller.
In fact, the maximum deviation is even lower, likely due to the addition of the threshold which
eliminates control inputs which are caused strictly by noise. The controller always applies either 3
or 4 different controls, with a mean number of 3.73.

Overall, applying a coarser sensitivity results in the controller being less robust to noise. The
trade-off is that a coarser sensitivity controller disturbs the fluid less by applying fewer distinct
spinning rates for the vortex. Ideally, a continuous time controller could be applied and the vortex
could smoothly decay to zero, but this is not possible in the real world.

To determine which event-triggered control algorithm sensitivity is optimal, one must compare two
potential causes of failing to close at Tgoal: i) failure caused by the model breaking down when
the fluid is overly perturbed and ii) failure caused by limited robustness to measurement noise.
To quantify the effects of i) is beyond the scope of this project, and would likely require CFD.
However, given the analysis performed here, it is recommended that the event-triggered control
system be used with a sensitivity no smaller than 0.025. The event triggered controller with this
sensitivity is as robust to error as the sampled controller and reduces the mean number of changes
in control input from 10 to 3.7; thus, there appears to be no benefit to applying a finer sensitivity
than this. To apply a coarser sensitivity would require justification that the benefits of applying
fewer control inputs outweighs the deviations in closure times caused by measurement noise.

4.6 Approximating Control Input

Due to the complexity of the operations completed in the MATLAB ‘place’ command, it is possible
that an embedded controller in an artificial heart would be unable to compute the gain matrix
quickly enough given the required sample rate of 100 Hz found in Section 4.4. On an Intel Core
i5-6300U CPU with 4 GB of RAM, to run one iteration of the controller that uses the ‘place’
method took MATLAB 0.018185 seconds, which corresponds to a rate of approximately 55 Hz.
This is too slow to allow the controller to execute at the sample rate. Therefore, it is necessary to
find a faster method to compute the gain matrix.

To achieve this faster speed, a polynomial function will be used to approximate the output of
the ‘place’ command as a function of θ, given fixed pole locations that were used for tuning the
controller in Section 4.5.

Since K is a function of θ and t, simulations were computed to determine K given a variety of θ
values at constant t = 0.125. This is plotted in Figure 24.

Further testing revealed that for the range of times in which the controller acts (0 to 0.5 seconds),
K is approximately independent of t.

A regression analysis was then performed to determine how K varied with θ. Note that because of
the way error is defined for the step trajectory, only the first entry of K affects the control input,
and so it is the only entry that must be evaluated. Let k refer to the first entry in the gain matrix
K.

Using the polynomial regression tool in Excel, a degree 6 polynomial was used to fit the curve
shown. The equation of this polynomial is:

k(θ) = −0.09θ6 + 0.4241θ5 − 0.589θ4 + 0.1061θ3 + 0.6788θ2 − 0.7667θ + 0.2736

The residuals for this approximation are plotted in Figure 25.
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Figure 24: Gain as a function of θ in MATLAB’s ‘place’ command

Figure 25: Residuals of polynomial fit for k(θ)

The pattern of the residuals indicates that the data would be better fit by a different function;
perhaps a higher order polynomial or a more complicated combination of functions. Lower order
polynomial fits exhibited similar residual patterns.

The goal of this approximation is not to discover the true relationship between θ and k inside the
‘place’ function, but rather to speed up the process of computing k without sacrificing controller
performance. Applying this approximating polynomial to generate the gain (with no measurement
noise) results in closure times that are identical to those of the ‘place’ method for the event-
triggered controller. There is no detectable change in tracking performance in a noisy setting
either. Therefore, while the polynomial is not a perfect representation of the relationship between
θ and k, it is sufficiently accurate to not affect controller performance.

To run one iteration of the approximate controller takes, on average, 0.0002 seconds, which is a
rate of 5000 Hz. While the embedded CPU in the artificial heart may be slower at computing these
values than the CPU used in these simulations, the approximate controller offers enough latitude
to have slower computations while still remaining faster than 100 Hz. Given the unknown (and
likely significant) limitations of the actuating mechanism and embedded CPU, limiting the sample
rate to 100 Hz provides room for additional time constraints without compromising controller
feasibility.
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The event-triggered controller which uses this approximation method to generate gain will be
referred to as the Approximate Event-Triggered Controller (AETC), and is our final recommended
design solution for the problem of valve closure.

4.7 A Possible Self-Triggered Control Algorithm

Self-triggered control is an offshoot of event-triggered control which further reduces computational
load. In a self-triggered controller, after actuating, the controller predicts when it will next need
to actuate, and then does not communicate with the sensors or actuate until this time. This is
different than the event-triggered controller, which evaluates whether to actuate at each time step.
The event-triggered controller removes the need to update actuation at every time step, whereas
the self-triggered controller removes the need to both actuate and communicate with the sensors
at every time step.

A self-triggered controller can be implemented on this system quite easily due to the repetitive
behavioural pattern the controller displays. In Figure 26, the average distribution of actuation
times for the AETC over 100 simulations with Tgoal = 0.25 s is displayed.

Figure 26: Distribution of control actuation times

There were a total of 377 control actions over the 100 simulations. In 100% of simulations, the
controller actuated at 0.15 and 0.16 seconds. In 77% of simulations, the controller actuated between
0.24 and 0.28 seconds. It should be noted that the control actions which occurred after the goal
time were all instances where the controller turned off. In 100% of simulations, the control actuated
at either 0.14 or 0.17 seconds.

Following this distribution, we can select t ∈ {0.14, 0.15, 0.16, 0.17, 0.23, 0.24, 0.25, 0.26, 0.27} in the
Tgoal = 0.25 s case and t ∈ {Tgoal + {−0.11,−0.10,−0.09,−0.08,−0.02,−0.01, 0, 0.01, 0.02}} in the
general case, as the set of times in which the controller should communicate with the sensor. This
should result in identical performance to the AETC, with the exception of potential rare deviations
in behaviour where the AETC would wish to actuate at times not seen in the 100 simulation test.

Ultimately, this algorithm was chosen to not be recommended for final implementation. This
is because the advantages of implementing self-triggered control are not worth the risks of not
receiving sensor information. While theoretically this algorithm reduces computational load, this
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is a simple system with only one sensor and one controller, and so this load should not be overly
intensive to begin with. Furthermore, if an abnormality were to occur in the heart, such as an
unexpected blockage or delay in the valve movement, the controller must be able to sense this as
soon as possible to react. Reducing controller communication with the sensor opens the pathway
for the controller to miss crucial information. With a system as sensitive as the heart, missing this
information for several time steps could have fatal effects.

4.8 A Note on the Controllability of the System

Here, a specific control goal has been explored, one which did not require a full analysis of the
controllability of the system. To speak more broadly of the control capabilities of the system
requires an analysis of controllability. For completeness, we make note of this here.

For this system, the non-linear time-varying dynamics are linearized to create a linear control
system which is evaluated at each time step. The controllability matrix of this linear system at a
given time t and given valve configuration is always full rank. The controllability matrix is given
by:

C(A,B) =

(
−ρ 1

4π2r2

)r=m,t
r=m,b

×
[
0 1
1 0

]

Therefore, we have controllability of the linearization of the system for any state and time combi-
nation.

It should be noted that our linearization of the system was derived using simplification steps prior
to taking the Jacobian. Therefore, it is unclear whether the controllability of this linearization
implies local controllability of the full system for all configurations and times, since standard local
controllability theorems do not apply.

4.9 Ability to Meet Constraints

The final controller design is the event-triggered controller which uses the approximating poly-
nomial to compute control gain (referred to as the AETC), and which uses the step-trajectory
method to generate reference trajectories. Final results for goal tracking for all of the controllers
using the step trajectory reference are presented below:

Controller Max Deviation, Tgoal = 0.25s # of Control Inputs Calculation Speed
Standard 0.004 s 1000+ 55 Hz
Sampled 0.014 s 10+ 55 Hz
Event-Triggered 0.012 s ≈3.7 55 Hz
AETC 0.012 s ≈3.7 5000 Hz

Table 2: Controller results

To ensure the controller is viable, the velocities in the vortex must remain within the limits of
maximum blood velocities in the left ventricle and aorta. Over all simulations using the AETC with
measurement noise, the largest circulation was approximately 0.40, corresponding to a maximum
blood velocity around the valve of 0.5 m/s. This is well within the limit of 4.7± 0.9m/s.

In the preceding sections, most analysis on controller error was done using the mean goal time
of 0.25 seconds. Because the effects of error may differ based on goal time, a full analysis was
performed over all goal times to estimate the maximum possible deviation using the AETC. The
maximum observed deviation was 0.018 seconds, which occurred for Tgoal = 0.45 s.
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These maximum observed deviations are beyond the limit of 0.01 seconds set out in the controller
design criteria. This is in part caused by that fact that the measurement noise being added to
the system was chosen to be an order of magnitude larger than that seen in common industry
sensors. In a more moderate noise environment, with measurement standard deviation on the
scale of 0.008 radians, which is still larger than that seen in industry, these maximum deviations
fall to the acceptable level of 0.01 seconds. Therefore, despite failing in the very high noise setting
simulated here, the controller is still robust to measurement noise that is significantly greater than
industry standards, and it should be possible to incorporate sensors into the system which allow
for acceptable levels of noise.

When it comes to input behaviour, in the final controller design it is not possible for the input signal
to smoothly decay to zero because of the discrete nature of the control. It can be observed though
that the signal does decay, with the greatest signal magnitude appearing when the controller first
actuates, and that signal either remaining constant or dropping in magnitude at each subsequent
sample time. This matches the desired input behaviour.

4.10 Conclusions on Controller Design

By taking the simplified dynamics of a valve in a blood vortex, it was found that a controller could
be designed which used the circulation of the vortex to effectively close the valve for a range of
times corresponding to the range of heart rates seen in a patient.

The final controller narrowly failed to meet the error specifications in a very high noise setting, but
showed acceptable performance when measurement noise was reduced to levels closer to those seen
in industry sensors. The final controller met the other two design criteria, providing reasonable
maximum vortex speeds and using control signals which approached zero as the valve closed.

5 Discussion of Results

The results presented here are those of a very specific problem – closing a heart valve in a vortex
in a specific amount of time. Despite this, the conclusions can be discussed more broadly.

At the core of this problem is the question of whether fluid can be manipulated to achieve desired
motion for an unactuated object placed in the fluid. This question has two prongs: i) is this
possible from a controls perspective, given the dynamics of the system, the nature of the goals,
the physical limitations of the controller, and the available modes of control of the motion, and ii)
is this possible from a mechanical perspective, to manipulate fluid in a predictable way. Here, we
have addressed i). To fully understand this problem requires both questions to be answered.

We make no claim that the results here are applicable to any problem other than the specific one
studied. But, the results here do indicate that i) can in fact be possible in limited, simplified fluids
environments. The main takeaway of this project is then this: if one assumes the motion of a fluid
can be manipulated, then there exist circumstances in which one can achieve desired motion of
objects immersed in the fluid using a discrete-time controller which manipulates the Navier-Stokes
equations.

6 Engineering Impact of Solution

While the controller discussed in this paper will have minimal direct societal impact, it may
contribute to the broader impact on society caused by the development and increased utilization
of totally artificial hearts.
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6.1 Social

The popularization of artificial hearts will result in many people afflicted with heart disease liv-
ing longer, more active lives. A study from 1991 focused on the quality of life of patients with
mechanical circulation systems, and ultimately predicted that their lives would be extended and
their quality of life would improve, so long as there is little societal stigma attached to their new
medical situation [22]. To prevent societal stigma attached to medical conditions, we can learn
from two classic cases where stigma has fundamentally affected the lives of people with a condition:
AIDS and mental health. Research has shown that the societal stigma around AIDS has negatively
affected how patients are able to manage the disease [29]. Mental health has had a similar stigma-
tization in our society [42]. To combat these issues, some previously effective methods have focused
on educating the general population, peer support for patients, and awareness campaigns [5; 11].
These lessons can be applied to artificial hearts to ensure patients do not feel stigma associated
with their condition and can achieve the highest quality of life possible.

Moreover, vortices formed in the heart provide benefits include softer closing of valve leaflets and
a cleansing effect which may help to prevent thrombosis formation [31]. Strokes and peripheral
thrombotic events affect 12% and 14% of patients, respectively, within thirty days of receiving an
artificial heart [12]. Control of the vortices could help strengthen the cleansing effect, resulting in
fewer post-operation complications for patients and fewer return visits to hospitals. This lessens
the physical and emotional strain on the patients, as well as the strain on the healthcare system.

6.2 Environmental

Hospitals are major producers of greenhouse gas emissions and massive electricity consumers; in
the United States, they are responsible for 10% of greenhouse gas emissions and 9% of criteria
air pollutants [15]. Hospitals also consume 4.3% of all commercial electricity despite accounting
for less than 2% of all commercial floor space [47]. By limiting the need for extensive in-hospital
patient care, artificial hearts would ideally reduce the resource expenditure of hospitals, resulting
in lower emissions and a lightened strain on the electrical grid.

Possibly hazardous substances entering the environment must also be considered. Many medical
inventions, such as birth control, end up leeching into water supplies and poisoning ecosystems
[14]. To ensure this product does not contribute to hazardous medical runoff or waste, the artificial
heart should require minimal artificial fluids or hormones to function, since the body may naturally
secrete these into water supplies.

Lastly, when a patient dies, the artificial heart will become a biohazard [16]. It will not decompose
naturally, and contains electronic components, so it should be removed from the patient. This must
be dealt with in a safe way to ensure biological particles do not enter the general environment.
Ideally, the product can be directly recycled by being installed in a new patient, much in the same
way that biological heart transplants can be done, as this will reduce waste. This will depend on
how palatable such a procedure is to prospective patients, since they may be put-off by the idea,
and whether the heart can be safely cleaned to ensure there is no host rejection [10].

6.3 Economic

The most important economic consideration for this project is that the final product is financially
feasible to implement for patients requiring artificial hearts. This means component cost must be
low and the installation procedure must be as quick and simple as possible. Financial feasibility will
also be linked to reliability of the design, to ensure the device does not require costly maintenance
or replacement [22].
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A Syncardia totally artificial heart, one of the leading artificial heart models on the market, costs
approximately $166,000 CAD initially, and about $24,000 CAD per year to maintain [4]. It is
currently the only total artificial heart to be approved in Canada and the United States [17]. This
is clearly very expensive, given that the median household income in Canada is $35,000 CAD [45].
Currently, OHIP, the Ontario provincial healthcare plan, covers all surgeries involving artificial
valve replacement [39]. Thus, the most relevant stakeholder for taking on the burden of cost will
be the provincial government. Work from Ohio State University has shown the costs of a left-
ventricular assistance device insertion and artificial heart transplant procedure to be $686,289 and
$881,586, respectively [27]. For Canada as a whole, the current costs directly associated with heart
transplants amount to $2.8 billion CAD [20]; if this product can reduce those costs, it will benefit
all taxpayers as well as provincial governments.

6.4 Ethics and Equity

Many ethical problems arise from the design of medical devices. Most notably, by designing such
a system, the engineer who signs off on the design assumes an ethical responsibility for possible
malfunctions resulting in casualties [40]. To ensure that such instances do not occur, trials and
tests must be performed in a rigorous clinical setting prior to implementation. Approval from
Health Canada is a necessary prerequisite for beginning human trials. The following criteria are
used to determine whether such approval is granted [19]:

• Sterilization of the device

• Execution of successful non-human studies

• Proper manufacturing and product control standards

• Evidence of product effectiveness

• Design and manufacturing standards used in the product

For this project, the design explored here would need to be validated by a larger team of experts
and through experimental testing prior to being implemented in human studies.

From an equity perspective, the design explored has been chosen to work for a wide range of heart
rates, meaning the heart should be viable for implementation in patients of all ages and health
statuses. The main equity concern revolves around the economics of the total artificial heart,
since the cost may prove a barrier to this potentially life-saving procedure if it is not covered by
provincial healthcare providers. This is ultimately a provincial government policy decision, and
can only be altered by engineers through lobbying once the product is ready for market.

7 Recommendations

7.1 Recommendations for Artificial Heart

While the initial exploration in this report has suggested that it may be possible to use a controlled
vortex mechanism to close the aortic valve in an artificial heart, more work must be done to confirm
this. The work from this project could be improved upon and built on in the following ways:

• Complete a simulation of the full valve in three-dimensions. The analysis provided here
only focused on one third of the tricuspid aortic valve in a two-dimensional flow. Future
work should analyze either bicuspid or tricuspid valve designs, which interact with a three-
dimensional vortex flow.
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• Utilize the capabilities of CFD to validate and improve the model. This project focused
on using the Navier-Stokes equations to design the controller. While this approach has
advantages when designing a controller, the model used here makes many simplifications. In
order to improve the model, computational fluid dynamics methods could be used to validate
the model, and potentially add correcting factors to account for the effects of valve contact on
the vortex flow, the geometric constraints around the valve, and the complex fluid properties
of blood.

• Evaluate alternative valve closure methods. While it may end up being feasible to close the
aortic valve using blood vortices, this may not be the most efficient method of closing the
valve. Ultimately, in a device as crucial as an artificial heart, reliability is the most important
factor in design. Alternative closure mechanisms should also be explored to ensure artificial
hearts are built using the safest design practices available.

• Evaluate actuation mechanisms. The work done in this project presupposes that there is an
effective method of controlling the circulation of the vortices in an artificial heart. In real
human hearts, these vortices form naturally due to the pressure gradients and geometry in the
heart. The question of how this circulation can not only be achieved, but can be controlled
inside an artificial heart, is crucial to answer. The solution may lie in blowing/sucking
mechanisms on the valve surface, and this option should be closely evaluated.

• Improve accuracy of vortex model. While the Lamb-Oseen vortex is a reasonable flow solution
given the digital imaging available, further improvements could be made by exploring the
complex flow in the heart in greater detail, with focused research on solutions to Navier-Stokes
equations that serve this purpose.

7.2 Recommendations for Fluids Research

This report presented a controller design for manipulating the Navier-Stokes equations to achieve
desired motion of an unactuated body. This research appears unique in the literature, but has
taken a very narrow approach due to the specific goals of the problem being tackled. Future
research may explore this topic in the following ways:

• General Relationship Between Navier-Stokes Equations and Body Motion. This paper only
utilized a particular solution to the Navier-Stokes equations, the Lamb-Oseen vortex, to
manipulate the body motion. By applying a more general Navier-Stokes equation setup, a
wider array of situations can be analyzed.

• Free Motion of Bodies. This paper focused on controlling the rotational motion of a body
with a fixed edge. Further research could be done on manipulating bodies in R2 or R3.

• Application Areas. To justify further research on this topic, additional application areas in
which fluid may be controlled to manipulate object motion should be explored. Other such
examples may include manipulating blood flow in the body to distribute pharmaceuticals
or nanomedical devices, altering HVAC systems in buildings to better manipulate motion of
suspended particles in air, or changing plumbing infrastructure to better carry solid waste.

8 Conclusion

In this paper, a controller was presented which uses an event-triggered discrete-time control al-
gorithm to close the aortic valve for a variety of heart rates. This work suggests that it may be
possible to implement a mechanism in an artificial heart which uses vortex forces to close the
valve. Further research on this problem should explore how the control of this fluid flow could be

41



achieved, as well as how to design more complex models which better simulate the flow behaviour
in the left ventricle.
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9 Appendix: MATLAB Code

For completeness, key portions of the MATLAB code used in simulation are presented here.

9.1 Main Code

Contents

• Simulate over a variety of goal times
• Physical Parameters of Fluid
• Physical Parameters of Valve
• Lamb-Oseen Vortex Parameters and Intializing State
• Define Desired Trajectory
• Additional Variables
• Simulation
• Controller
• Motion Update

clear all

nm = 0;

Simulate over a variety of goal times

UniqueCount = zeros(20,1);

controlnumbers = zeros(30,100);

for Tgoal = 0.25

nm = nm+ 1;

Physical Parameters of Fluid

rho = 1060; %Density of blood

nu = (2.4*10^(-6)); %viscocity of blood

Physical Parameters of Valve

x2 = 0.01; % X Location of fixed point of valve

y2 = 0.01; % Y Location of fixed point of valve

length = 0.02; %Length of valve (maximum seen in patients)

mass = 0.0016; %mass of valve

initialAngle = pi/2; %initial angle of valve

thick = 0.001; %Thickness of valve

Lamb-Oseen Vortex Parameters and Intializing State

Gamma(1) = 0; %initial circulation of Lamb-Oseen vortex

omega = 0; %intial angular velocity
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alpha = 0; %initial angular acceleration

dt = 0.001; %time step for simulation

sample = 0.01; %Controller sample time (100 Hz)

Sensitivity = 0.025; %event-triggered sensitivity

x1 = x2 - length*cos(initialAngle); %location of rotating bottom surface of valve

y1 = y2 + length*sin(initialAngle);

thetaV2 = pi - atan2(y1 - y2,x2 - x1); %Getting angle using 4 quadrant inverse tangent

count = 0;

%This count variable is used in place of time in the motion variables

%since time steps aren’t integers

Moment = 0; %Initial moment on valve

Tend = 1; %End of simuation time

Define Desired Trajectory

%The desired trajectory is a function theta(t)

t = 0:dt:Tgoal;

t2 = Tgoal+dt:dt:2*Tgoal-dt;

path1 = (pi/2)*ones(1,round((Tgoal - 0.144)/(dt)+1)); %ORIGINAL METHOD

path1 = (pi/2)*ones(1,round((Tgoal - 0.109)/(dt)+1)); %SAMPLED METHOD

path1 = (pi/2)*ones(1,round((Tgoal - 0.101)/(dt)+1)); %EVENT METHOD

path2 = zeros(1,round(Tend/dt + 1)+1); %zeros after end

path = [path1 path2];

Additional Variables

stoptime = 0; %Counting Variable

angle = 0; %Plotting Variable

Simulation

for t = 0:dt:Tend

count = count + 1;

Controller

if mod(t, sample) == 0 %Check if it is a sample time

y_n = thetaV2(count)+ randn(1)*(0.02);

%measurement of angle with additive measurement noise^

K = LinearFeedbackVortex2(t, y_n, x2, y2, ’EventTriggered’);

%Call controller to get gain matrix^

K = [0 ApproximateK(y_n) ]; %note:backwards from doc

e(count) = y_n - path(count);

%Compute error
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%This statement checks to make sure our error knows that we can’t go beyond

%the physical limits of the valve

if count > 1

if (e(count) - e(count-1)) > pi/2

e(count) = e(count) - pi/2;

elseif e(count - 1) - e(count) > pi/2

e(count) = e(count) + pi/2;

end

end

input = K*(e(count));

%Controller gives proportional gain based on Tgoal

Gamma(count+1) = input(2);

%Note: this is opposite ordering from in document

%This statement is for standard setups, to prevent our vortex from trying

%to push backwards.

if Gamma(count+1) < 0

Gamma(count+1) = 0; %We don’t want our vortex to spin backwards

end

%Check if we’re allowed to apply control, if not, reset control to before

if EventTriggeredControl(Gamma(count), input(2), Sensitivity) == 0

Gamma(count+1) = Gamma(count);

elseif EventTriggeredControl(Gamma(count), input(2), Sensitivity) == 2

Gamma(count+1) = 0;

else

UniqueCount(nm) = UniqueCount(nm) + 1;

end

else %if it isn’t a sample time, don’t update control

Gamma(count+1) = Gamma(count);

y_n = thetaV2(count)+ randn(1)*(0.02);

e(count) = y_n - path(count);

end

Motion Update

%NOTE x2, y2 is FIXED POINT OF VALVE

%Call motion update to compute new angle and angular velocity

[thetaV2(count+1), omega(count+1)] = ...

MotionUpdateVortex(thetaV2(count), omega(count),t, Gamma(count+1), dt, x2, y2);

%This is to prevent our valve from dipping slightly below the closed point

%between two time steps

if thetaV2(count+1)<=0

thetaV2(count+1) = 0;

omega(count+1) = 0;

end
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if thetaV2(count+1)>=pi/2

thetaV2(count+1) = pi/2;

omega(count+1) = 0;

end

if thetaV2(count) == 0

stoptime = stoptime + 1;

%Count how long we’ve been waiting since we closed (used to calculate EndTime)

end

%Update positions of the four corners of the valve

x1 = x2 - length*cos(thetaV2(count+1));

y1 = y2 + length*sin(thetaV2(count+1));

x3 = x1 + thick*sin(thetaV2(count+1));

y3 = y1 + thick*cos(thetaV2(count+1));

x4 = x2 + thick*sin(thetaV2(count+1));

y4 = y2 + thick*cos(thetaV2(count+1));

end

controltimes(nm,:) = Gamma;

EndTime(nm) = Tend - (stoptime-1)*dt; %When did the valve close

fprintf(’It took %.3f seconds for the valve to close \n’, EndTime);

fprintf(’The valve wanted to close in %.3f seconds’, Tgoal);

It took 0.250 seconds for the valve to close

The valve wanted to close in 0.250 seconds

end

9.2 Functions

9.2.1 Updating Motion

function [angle, omega] = ...

MotionUpdateVortex(angle, omega, t, input, dt, x2, y2)

rho = 1060;

nu = (2.4*10^(-6));

thetaV = angle;

length = 0.02; %Length of valve

mass = 0.0016; %mass of valve

thick = 0.001; %Thickness of valve

I = (1/6)*mass*length^2; %Moment of inertia of valve about base

int = 0.001; %Interval to integrate pressures over
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limitx = x2 - length; %limit conditions for when valve is closed

limity = y2; %limit conditions for when valve is closed

limitopenx = x2;

limitopeny = y2 + length;

x1 = x2 - length*cos(angle);

y1 = y2 + length*sin(angle);

x3 = x1 + thick*sin(angle); %Points on upper surface of valve

y3 = y1 + thick*cos(angle);

x4 = x2 + thick*sin(angle);

y4 = y2 + thick*cos(angle);

Moment = 0;

for step = 0:int:(length-int)

depth = ((step + int/2)/length)*(2*pi/3)*0.02; %Depth of valve varies

depth = (2*pi/3)*length - (2*pi/3)*(step + int/2);

r2 = sqrt((x2 - step*cos(thetaV) - (int*cos(thetaV))/2)^2...

+ (y2 + step*sin(thetaV) + (int*sin(thetaV)/2))^2);

r4 = sqrt((x4 - step*cos(thetaV) - (int*cos(thetaV)/2))^2...

+ (y4 + step*sin(thetaV) + (int*sin(thetaV)/2))^2);

F = int*depth*PressureDiff(input, r2, r4, t);

ubottom = -(input./(2.*pi.*r2)).*vortex(r2,t,nu)*sin(thetaV);

vbottom = (input./(2.*pi.*r2)).*vortex(r2,t,nu)*cos(thetaV);

Dbottomx = 1.9*depth*rho*0.5*int*-1*sign(-ubottom ...

+(step+int/2)*omega*sin(thetaV))*(-ubottom +(step+int/2)*omega*sin(thetaV))^2;

Dbottomy = 1.9*depth*rho*0.5*int*-1*sign(vbottom...

+(step+int/2)*omega*cos(thetaV))*(vbottom +(step+int/2)*omega*cos(thetaV))^2;

Moment = Moment + (-F + Dbottomx*sin(thetaV) + ...

Dbottomy*cos(thetaV))*(step + (int/2));

end

alpha = (Moment)/I;

omega = omega + alpha*dt;

angle = angle + omega*dt;

x1 = x2 - length*cos(angle);

y1 = y2 + length*sin(angle);

if angle<0

y1 = limity;

x1 = limitx;

angle = 0;

omega = 0;

elseif angle>pi/2

y1 = limitopeny;

x1 = limitopenx;

angle = pi/2;

omega = 0;

end

if y1 < limity

y1 = limity;

x1 = limitx;

END = 1;
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end

end

9.2.2 Calling Controller

function [Gain] = LinearFeedbackVortex2(t, angle, x2, y2, type)

rho = 1060; %Density of blood

nu = (2.4*10^(-6)); %Viscocity of blood

length = 0.02; %Length of valve

mass = 0.0016; %mass of valve

thick = 0.001; %Thickness of valve

x4 = x2 + thick*sin(angle);

y4 = y2 + thick*cos(angle);

I = (1/6)*mass*length^2; %Moment of inertia of valve about base

r2 = sqrt((x2 - 0.5*length*cos(angle))^2 + (y2 - 0.5*length*sin(angle))^2);

%Distance to center point of valve from origin^

r4 = sqrt((x4 - 0.5*length*cos(angle))^2 + (y4 - 0.5*length*sin(angle))^2);

Area = (1/2)*2*(pi/3)*length^2; %Surface area of valve that pressure acts on

%Our state is [theta omega]

%A and B come from the state space representation of the system

A = [0,1;0,0]; %i.e. \dot{\theta} = omega

B = [0; -((Area)*(0.02/3)*(-rho/(4*pi*r2^2) + rho/(4*pi*r4^2)))/I];

%this comes from linearizing

%a simplified

%equation relating

%Gamma to alpha

if strcmp(type, ’EventTriggered’) == 0

Gain = place(A, B, [-500000 -550001]);

else

Gain = place(A, B, [-500000 -550001]);

end

9.3 Event-Trigger Function

function [Control] = EventTriggeredControl(u_past, u_desired, Sensitivity)

if abs(u_desired - u_past) > Sensitivity

Control = 1;

elseif u_desired < 0.01

Control = 2;

else Control = 0;

end

end
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