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Accuracy for perceptron (with flip probability 0.1): 0.7602

You have infinitely many submissions remaining.

Solution: @.75

Accuracy for averaged perceptron (with flip probability 0.25):
0.6375

‘ H H 100.00%

You have infinitely many submissions remaining.

N J
e ~

Accuracy for averaged perceptron (with flip probability 0.1): 0.805

:] 100.00%

You have infinitely many submissions remaining.

Solution: e.8

N J
e N

Accuracy for perceptron (with flip probability 0.25): 0.6046

‘ H H 100.00%

You have infinitely many submissions remaining.
\ J
e ~

Modify your eval_learning_alg so that it tests hypothesis on the training data instead of generating a new test data set. Run

enough trials that you can confidently predict this "training accuracy" for the two learning algorithms. Note the differences

from your results above.

-

Accuracy for perceptron (with flip probability 0.1) on training data:
0.8298

‘ H H 100.00%

You have infinitely many submissions remaining.

S
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Accuracy for averaged perceptron (with flip probability 0.1) on training data:
0.8559

You have infinitely many submissions remaining.

Solution: 0.87

Accuracy for perceptron (with flip probability 0.25) on training data:
0.6674

‘ H H 100.00%

You have infinitely many submissions remaining.

Accuracy for averaged perceptron (with flip probability 0.25) on training data:
0.7316

‘ H H 100.00%

You have infinitely many submissions remaining.
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In the first part of this assignment, we will consider several general issues in representing features and their impact on
classification. In the second part of the assignment, we will experiment with these strategies in the context of realistic data sets.
Please make sure your read the for this assignment.

Feature Transformations

A code file that is required for this assignment can be found ,and a

1) Scaling
Consider a linearly separable dataset with two features:

data = ([[20@, 800, 200, 800],
[0.2, ©.2, 0.8, 0.8]])
labels = [[-1, -1, 1, 1]]

Consider the separator defined by 8 = (0,1),60y = —0.5.

In order to apply the perceptron mistake bound ( ), we transform our problem from 0Tz 4+ 60y =0tosome Tz =0
. We do this by appending 6 to 8, and appending 1 to z, as follows:

T T3
0" x = [91 92 00} . =0
In this phrasing, our new "8" is (0, 1, -0.5). For a separator through the origin, recall that is the

minimum of y = & (§Tz(?) /(||| over all data points (z®, ?).

For the following questions, assume we are working in the transformed (3d) feature space, with perceptron through the origin,
and where if the data has bounded magnitude R, then the theoretical upper bound on mistakes made by perceptron is (%)2,

for a separable data set.

You are free to use your perceptron algorithm implemented in the previous homework to answer the following questions.
(Some parts require more runs of the perceptron algorithm than one could reasonably perform by hand.)

1A)
'd N\
What is the margin v of this data set with respect to that separator (up to 3 decimal places)?
0.268
‘ H H 100.00%
You have infinitely many submissions remaining.
1B)
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What is the theoretical bound on the number of mistakes perceptron will make on this problem?
8910670

You have infinitely many submissions remaining.

Solution: 8910693

Explanation:

R is approximately 800 from 1/800% + 0.8% + 12, then mistakes are bounded by (R/7)?. Recall that
we found 7y in the previous part to be 0.268 which we plug in here. (800/0.268)? is approximately
8910700 (exact value is 8910693).

1C)

-
How many mistakes does perceptron through origin have to make in order to find a perfect separator on the data
provided above, in the order given? (Try it on your computer, not by hand!)

666696

You have infinitely many submissions remaining.

Ve

Solution: 666696

Explanation:

Running the code from the previous perceptron homework, we obtain 666696.

A common pitfall is not running the code for enough iterations.
N

1D)
If we were to multiply both original features of all of the points by .001, and considered the separator through
origin @ = (0,1, —0.0005), what would the margin of the new dataset be?
0.0003
‘ H H ’ 100.00%
You have infinitely many submissions remaining.
.
1E)

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3AM...
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How would the performance of the perceptron (as predicted by the mistake bound) change?

More mistakes

v
‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

N

1F)

If we multiplied just the first original feature (first row of the data) by .001, and used our original separator, what
would the new margin be? 0.268328

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

-

1G)

What would the mistake bound be in this case? 32

You have infinitely many submissions remaining.

~

Solution: 32

Explanation:

Now R = /(12 + 0.8% + 0.82) = 1.51
While there was no effect on the margin v, R actually decreased significantly under this
transformation, because the element that contributed the most to its value (first coordinate of x) has

been scaled down.

Hence the mistake bound dropped by a lot!

1H)

Run the perceptron algorithm on this data; how many mistakes does it make?
7

‘ ’ ‘ ’ ‘ ’ 100.00%

You have infinitely many submissions remaining.

N

2) Encoding Discrete Values

Some data sets have features that take on discrete values drawn from a set. Examples might be:

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3AM...
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e which section of a class a student isin (1, 2, 3, 4)
e manufacturer of a cell phone (Samsung, Xiaomi, Sony, Apple, LG, Nokia)
¢ which laboratory performed a particular medical test

Sometimes they already have an obvious encoding into integers; other times, they don't but it's easy to make one (e.g.,
Samsung = 1, Xiaomi = 2, Sony = 3, Apple = 4, LG = 5, Nokia = 6)

2A) Let's consider the case of the cell phones, using the encoding above, and imagine there is some prediction problem, such
as predicting whether the phone will last three years, for which we have the data set:

data = [[2, 3, 4, 5]]
labels = [[1, 1, -1, -1]]

What value of 8 and 8y would we get when running perceptron on this data? You are free to use the perceptron implemented
in homework 2.

Enter a Python list with two floats, one for 8 and one for 6. [-2, 7]

‘ H H 100.00%

You have infinitely many submissions remaining.

2B) What prediction would we make about other phone types based on this classifier?

( N
Enter a Python list with two labels (1 or -1), the first one for a Samsung phone and the second for a Nokia phone.
[1.-1]

‘ H H 100.00%

You have infinitely many submissions remaining.

20)

Are these predictions meaningful given the training data we used? No v

‘ H H 100.00%

You have infinitely many submissions remaining.

2D) It is common to encode a feature which takes on a value from a set of discrete values, not as a single multi-valued feature,
but using a one hot encoding.

Here, assume you have a feature f which can take on any value from the set {1, 2, ..., k}. If f takes on value i, then we
represent it as a vector of length k of all zeros, except for a +1 at the ith coordinate.

Write a function one_hot that takes as input x, a single feature value (between 1 and k), and k, the total possible number of
values this feature can take on, and transform it to a numpy column vector of k binary features using a one-hot encoding
(remember vectors have zero-based indexing).

For example, one_hot(3,7) should return a column vector of length 7 with the entry at index 2 taking value 1 (indices start at 0)
and other entries taking value 0.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3AM... 4/16
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1 import numpy as np

2

3 def one_hot(x, k):

4 out = [1 if i==(x-1) else @ for i in range(k)]
5 return np.array([out]).T

[ ) ) e o ) e ] 10605

You have infinitely many submissions remaining.

(N

J

2E) What happens if we use one-hot encoding on the data set part 2A) above, and put it into the perceptron? Recall that for a

classifier h(z), the prediction is +1 if h(z) > 0 and —1 otherwise. Further note that the perceptron algorithm makes an

update whenever ) (72 4- 6y) < 0.

2E i) What is the separator produced by the perceptron algorithm?

-

Enter a Python list with 7 floats, six for @ and one for 6y. [0, 2, 1, -2, -1, 0, 0]

You have infinitely many submissions remaining.

~

Solution: [e, 2, 1, -2, -1, 0, @]

Explanation:

We map each phone to a separate dimension and update the offset by one for either a positive or
negative example to obtain that § = [0,2,1,—2,—1,0] and 6y = 0

(N

-

2E i) What are the predictions for Samsung and Nokia?

Enter a Python list with two labels (1 or -1), the first one for a Samsung phone and the second for a Nokia phone.
(-1, -1]

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

N

2E iii) What are the distances for the Samsung and Nokia data points from the separator?

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3AM...
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Enter a Python list with two distances, the first one for a Samsung phone and the second for a Nokia phone.
[0.0]
‘ H H 100.00%

You have infinitely many submissions remaining.

-

2F) Now, what if we have this dataset:

data = [[1, 2, 3, 4, 5, 6]]
labels = [[1, 1, -1, -1, 1, 1]]

Is it linearly separable in the original encoding? No v

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

2G) Is it linearly separable in the one-hot encoding? If so, provide the separator found by the perceptron.

Enter a Python list with 7 floats, six for @ and one for 6y or 'none’
[1,1,-2,-2,1,1,0]
‘ H H 100.00%

You have infinitely many submissions remaining.

2H) Enter an assignment of data values to labels (with distinct data points) that is not linearly separable using the one-hot

encoding, or enter None if no such assignment exists.

Enter a Python list with 6 tuples (value, label) or 'none' 'none'

‘ ’ ‘ ’ ‘ ’ 100.00%

You have infinitely many submissions remaining.

3) Polynomial Features

One systematic way of generating non-linear transformations of your input features is to consider the polynomials of increasing
order. Given a feature vector * = [x1, T3, ..., md]T, we can map it into a new feature vector that contains all the factors in a

polynomial of order d. For example, for x = [x1,x3] and order 2, we get

¢(z) = [1,21, T2, 2122, 77, 73] "

and for order 3, we get

2 2 2 2 T
¢($) = [1’ L1, T2y L1XL2, L1, Lo, L1T2,T1To, :E:{)’ $§]

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3AM... 6/16
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In the code file, we have defined make_polynomial_feature_fun that, given the order, returns a feature transformation function
(analogous to ¢ in the description). You should use it in doing this problem.

3A)

% N
Enter a list of 6 integers indicating the number of polynomial features of degrees [1, 10, 20, 30, 40, 50] for a 2-
dimensional feature vector. [3, 66, 231, 496, 861, 1326]

‘ H H 100.00%
You have infinitely many submissions remaining.
N J

3B) Consider this data-set of four points in two-dimensional space:

data = ([[1, 1, 2, 2],
[1, 2, 1, 2]1])
labels = [[-1, 1, 1, -1]]

It is standardly called the "exclusive-or" or "xor" problem. These points are not linearly separable, and you could interpret each
point as being a pair of truth values, with their label being the XOR of the values.

In the code file, we have defined 4 sample data sets, (1) super_simple_separable_through_origin, (2) super_simple_separable, (3)
xor, and (4) xor_more. On your own machine, you should run the code we have provided (test_with_features) for various
orders of polynomial features and enter below the order of the smallest feature that separates the data. Make sure that you
have included your implementation of perceptron in that file or you can use the implementation we have provided. You may
need to adjust the number of iterations that the perceptron runs.

The separators are displayed when the code runs; it's instructive to watch them to see the range of separators that these non-
linear transformations produce. Note that the separators are drawn by evaluating the feature transformations on a grid of
points in the feature space and using the separator to classify them. (Note: If you have issues with the graphic not moving
forward, try pressing the keys within your terminal.)

4 N\
Enter a Python list of integers indicating the smallest polynomial order for which a separator exists for each of the
four datasets in the code file (in order). [1, 1, 2, 3]

You have infinitely many submissions remaining.

Solution: [1, 1, 2, 3]

Experiments

A code and data folder that will be necessary for doing this homework can be found at the top of the page. In the file
code_for_hw3_part2.py, include your learner code from HW 2. You will want to modify the evaluation algorithms so that
they take a T argument to pass to the learners.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3AM... 7/16
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The rest of this assignment will require running the code on your computer; we will be asking only for the results of your runs.

4) Evaluating algorithmic and feature choices for AUTO data

We now want to build a classifier for the auto data, with a focus on the numeric data. In the code_for_hw3_part2.py, we have
supplied you with the load_auto_data function, which can read the relevant .tsv file. It returns a list of dictionaries, one for each
data item.

We then specify what feature function to use for each column in the data. The file hw3_part2_main.py has an example that
constructs the data and label arrays using raw features for all the columns.

In the list features of hw3_part2_main.py, you will find a list of feature name, feature function tuples. There are three options for
feature functions: raw, standard and one_hot. raw uses the original value; standard subtracts out the mean value and divides
by the standard deviation; and one_hot will one-hot encode the input, as described in the notes.

The function auto_data_and_labels processes the dictionaries and return data, labels. data has dimension (d, 392), where d is
the total number of features specified, and 1abels has dimension (1, 392). The data in the file is sorted by class, but it will be
shuffled when loaded.

We have included staff implementations of perceptron and average perceptron in code_for_hw3_part2.py. Using the feature
arrays and these implementations, you will be able to compute 8 and 6.

We have also included staff implementations of eval_classifier and xval_learning_alg (in the same code file). You should use
these functions to report accuracies.

4.1) Making choices

We know of two algorithm classes: perceptron and averaged perceptron (which we implemented in HW 1). We have a several
parameters that specify the settings for these learning algorithms.

A) Which parameters should we use for the learning algorithm? In the perceptron and averaged perceptron, there is a single
parameter, T', the number of iterations.

B) Which features should we use? We have lots of choices here: we can use any subset of the data columns and for each
column we have choices of how to compute features.

C) We will use expected accuracy, estimated by 10-fold cross-validation (we have included the definition in the code file), to
make these choices of parameters.

o We will try two types of algorithms: perceptron and averaged perceptron.
e We will try 3valuesof T:T = 1,T = 10, T = 50.
o We will try 2 feature sets:

1. [cylinders=raw, displacement=raw, horsepower=raw, weight=raw, acceleration=raw, origin=raw]
2. [cylinders=one_hot, displacement=standard, horsepower=standard, weight=standard, acceleration=standard,

origin=one_hot]

Perform 10-fold cross-validation for all combinations of the two algorithms, three T" values, and the two choices of feature sets.
It will be worthwhile investing in a piece of code to carry out all of the evaluations, in case you need to do this more than once.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3AM... 8/16
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In general, you should shuffle the dataset before evaluating, but for this exercise, please use hw3.xval_learning_alg, which
shuffles the dataset for you, so that your results match ours.

4.1Ci)

( N\
Enter accuracies (perceptron, averaged perceptron) for T=1, feature set 1:
[0.6526, 0.8441]

You have infinitely many submissions remaining.

Solution: (0.653, 0.844)

4.1Cii)

( ™
Enter accuracies (perceptron, averaged perceptron) for T=1, feature set 2:
[0.7908, 0.9004]

You have infinitely many submissions remaining.

Solution: (0.791, 0.9)

\\ J
4.1C i)
( N\

Enter accuracies (perceptron, averaged perceptron) for T=10, feature set 1:
[0.7423, 0.8366]

You have infinitely many submissions remaining.

Solution: (e.742, 0.837)

4.1Civ)

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3AM... 9/16
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-

Enter accuracies (perceptron, averaged perceptron) for T=10, feature set 2:

[0.8061, 0.8979]

You have infinitely many submissions remaining.

Solution: (0.806, ©.898)

4.1Cv)

-

Enter accuracies (perceptron, averaged perceptron) for T=50, feature set 1:

[0.6909, 0.8366]

You have infinitely many submissions remaining.

Solution: (0.691, 0.837)

4.1C vi)

~

-

Enter accuracies (perceptron, averaged perceptron) for T=50, feature set 2:

[0.8060, 0.9005]

You have infinitely many submissions remaining.

Solution: (0.806, 0.901)

Now we have the data we need to make rational choices.

4.1D)

Which algorithm class is typically more effective?

Pick one: Averaged Perceptron v

‘ H H 100.00%

You have infinitely many submissions remaining.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3A...
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4.1E) For the better algorithm, which combination of T" and feature would you use? Consider expected accuracy as of primary
importance, take into account running time for near ties in accuracy.

( 2\

Enter a tuple of two integers (T, feature_set): (1, 2)

You have infinitely many submissions remaining.

~

Solution: ' (1, 2) or (10, 2)'

Explanation:

(1, 2) is the better choice because it gets nearly as good accuracy as using more iterations, but does far
less work. We accept (10, 2) as well because before we did staff revisions to this question, it was better,

and we forgot to fix the answer!
N

- /

4.2) Analysis

4.2 A) For the best algorithm type, best T and best feature set, construct your best classifier (6, 6) using all the data. Based
on the values of the coefficients, which feature has the most impact on the output predictions?

( 2\

Choose the name of one feature: weight v

You have infinitely many submissions remaining.

[Solution: cylinders or weight, depending on how you compute this

4.2 B) (Optional) Is there any set of two features you can use to attain comparable results as your best accuracy? What are
they?

5) Evaluating algorithmic and feature choices for review data

In the code file (and the colab notebook ), we have supplied you with the load_review_data function, that can be used to read a
.tsv file and return the labels and texts. We have also supplied you with the bag_of_words function, which takes the raw data and
returns a dictionary of unigram words. The resulting dictionary is an input to extract_bow_feature_vectors which computes a
feature matrix of ones and zeros that can be used as the input for the classification algorithms. The file hw3_part2_main.py has
code for constructing the data and label arrays. Using these arrays and our implementation of the learning algorithms, you will
be able to compute 6 and 6. You will need to add your (or the one written by staff) implementation of perceptron and
averaged perceptron.

5.1) Making choices

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3A... 11/16
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We have two algorithm classes: perceptron and averaged perceptron. We have a couple of choices of parameters to make to
completely specify the learning algorithms.

5.1A) Which parameters should we use for the learning algorithm? In the perceptron and averaged perceptron, there is a single
parameter, T', the number of iterations.

5.1B) Which features should we use? We could do variations of bag-of-words, for example, simply indicating whether a word is
present or, alternatively, using a count of how many times it is present. We can also remove commonly used words with little
information; the code distribution includes a file of those words: stopwords. txt. You're welcome to explore these on your own;
we'll use only a binary indicator for all the words.

5.1C) Perform 10-fold cross-validation for all combinations of the two algorithms and three T values (1, 10, 50). Record the
accuracies for each combination (there should be 6 values total).

Note: These tests may take a couple of minutes to run; don't expect instant response, but it shouldn't run for 10 minutes.
Now we have the data we need to make rational choices.

5.1D) Which algorithm class is typically more effective?

Pick one: Averaged Perceptron v

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

5.1E) For the better algorithm, which value of T" would you use? Consider expected accuracy as of primary importance, take
into account running time for near ties in accuracy.

( N\

Enter a value of T: 10

You have infinitely many submissions remaining.

Solution: 10

- J

5.1F) For the better algorithm and best value of T, what is your accuracy?

Enter a number between 0 and 1: 0.8237

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

5.2) Analysis

For the best algorithm and best T', construct your best classifier (0, 8y) using all the data.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3A... 12/16
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Note: We have included a function called reverse_dict in code_for_hw3_part2.py that you may find convenient. You are not
required to use this function.

5.2A) What are the 10 most positive words in the dictionary, that is, the words that contribute most to a positive prediction?

Enter a Python list of ten strings: ['great, 'delicious’, 'perfect’, 'excellent’, 'satisfied', 'yummy', 'easily

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

5.2B) What are the 10 most negative words in the dictionary, that is, the words that contribute most to a negative prediction.

Enter a Python list of ten strings: ['worst', 'awful’, 'poor’, 'horrible', 'unfortunately', 'formula’, 'bland’,

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

5.2C) (Optional) You might find it amusing to find the most positive and most negative reviews. That is, ones with the most
positive and negative signed distance to the hyperplane.

6) Evaluating features for MNIST data

This problem explores how well the perceptron algorithm works to , from the well-known
("MNIST") dataset, buiding on your thoughts from lab about extracting features from images. This exercise will highlight how
important feature extraction is, before linear classification is done, using algorithms such as the perceptron.

Dataset setup

Often, it may be easier to work with a vector whose spatial orientation is preserved. In previous parts, we have represented
features as one long feature vector. For images, however, we often represent a m by n image as a (m,n) array, rather than a
(mn,1) array (as the previous parts have done).

In the code file, we have supplied you with the load_mnist_data function, which will read from the provided image files and
populate a dictionary, with image and label vectors for each numerical digit from 0 to 9. These images are already shaped as
(m,n) arrays.

6.1) Feature extraction

In the real world, there may be complicated ways to extract meaningful features from images, but in this section we will explore
several simple methods.

6.1A) You may notice that some numbers (like 8) take up more horizontal space than others (like 1). We can compute a feature
based on the average value in each row. Write a Python function that takes in a (m,n) array and returns a (m,1) array, where
element i is the average value in row i.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3A... 13/16
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2

3 def row_average_features(x):

a win

5 @param x (m,n) array with values in (0,1)

6 @return (m,1) array where each entry is the average of a row

7 mnn

8 m, n = Xx.shape

9 row_avgs = np.zeros((m, 1))

10 for row in range(m):

11 row_sum = 0

12 for col in range(n):

13 row_sum += X[row, col]

14 row_avgs[row, @] = row_sum/n

15 return row_avgs

16
‘ H H H 100.00%
You have infinitely many submissions remaining.

6.1B) We can also compute a feature based on the average value in each column. Write a Python function that takes in a (m,n)

array and returns a (n,1) array, where element j is the average value in column j.

p

3 def col_average_features(x):
4 mmnn
5 @param x (m,n) array with values in (90,1)
6 @return (n,1) array where each entry is the average of a column
7 mmon
8 X = X.T
9 m, n = Xx.shape
10 row_avgs = np.zeros((m, 1))
11 for row in range(m):
12 row_sum = 0
13 for col in range(n):
14 row_sum += Xx[row, col]
15 row_avgs[row, @] = row_sum/n
16 return row_avgs
17
1Q

o ) ) e ) e ] 000

You have infinitely many submissions remaining.

6.1C) Finally, you may notice that some features are more "top heavy" while others are more "bottom heavy." Write a function

that takes in a (m,n) array and returns a (2,1) array, where the first element is the average value in the top half of the image,

and the second element is the average value in the bottom half of the image.

You may use the cv function from homework 1.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3A...

14/16



2/8/2021

6.036 Spring 2019

10
11
12
13
14
15
16
17
18
19
20
21

lale)

top half of the image = rows © to floor(m/2) [exclusive]
and the second entry is the average of the bottom half of the image
= rows floor(m/2) [inclusive] to m

wnn

m, n = x.shape

mid_row = m//2
top_sum = ©
bot_sum = @

for col in range(n):
for row in range(mid_row):
top_sum += x[row, col]
for row in range(mid_row, m):
bot_sum += x[row, col]
return np.array([[top_sum/(mid_row*n)], [bot_sum/((m-mid_row)*n)]])

H H H 100.00%

You have infinitely many submissions remaining.

Important: In hw3_part2_main.py, you may need to modify these functions to accept a data matrix of size (n, 28, 28), or you
may use these functions in other ways (loops are allowed).

6.2) Feature evaluation

We can use these features to distinguish between numbers.

Important: For this section, we will be using T=50 with the base perceptron algorithm to train our classifier and 10-fold cross

validation to evaluate our classifier. A function called get_classification_accuracy has already been implemented for you in

code_for_hw3_part2 to compute the accuracy, given your selected data and labels.

You must use our implementation of cross validation to report accuracies (you may call hw3.xval_learning_alg).

6.2A) First we will find baseline accuracies using the raw 0-1 features.

Convert each image into a (28*28, 1) vector for input into the perceptron algorithm. Hint: np.reshape may be helpful here.

Run the perceptron on four tasks: 0 vs. 1, 2 vs. 4, 6 vs. 8, and 9 vs. 0.

-

Enter a list of accuracies [0 vs. 1, 2 vs. 4, 6 vs. 8, 9 vs. 0]: [0.975, 0.864166, 0.9479, 0.64708]

You have infinitely many submissions remaining.

Solution: [0.975, ©.8641666666666665, 0.9479166666666667, 0.6470833333333333]

N

Now let's evaluate the features we extracted.

6.2B) Using the extracted features from above, run the perceptron algorithm on the set of 0 vs. 1 images.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3A...
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Enter a list of accuracies [row, column, top/bottom]: [0.48125, 0.6375, 0.4812]

‘ H H 100.00%

You have infinitely many submissions remaining.

6.2C) Using the extracted features from above, run the perceptron algorithm on the set of 2 vs. 4 images.

Enter a list of accuracies [row, column, top/bottom]: [0.77541666666, 0.4974999, 0.4974999]

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

6.2D) Using the extracted features from above, run the perceptron algorithm on the set of 6 vs. 8 images.

Enter a list of accuracies [row, column, top/bottom]: [0.92125, 0.52125, 0.565000000]

You have infinitely many submissions remaining.

Solution: [0.92125, 0.52125, 0.5650000000000001 ]

6.2E) Using the extracted features from above, run the perceptron algorithm on the set of 9 vs. 0 images.

'd N\
Enter a list of accuracies [row, column, top/bottom]: [0.49749999999999994, 0.504 1666666666667, 0.49749999999

You have infinitely many submissions remaining.

Solution: [0.49749999999999994, ©.5041666666666667, 0.49749999999999994]

- J

6.2F) (Optional) What does it mean if a binary classification accuracy is below 0.5, if your dataset is balanced (same number
from each class)? Are these datasets balanced?

6.2G) (Optional) Feel free to classify other images from each other. Which combinations perform the best, and which perform
the worst? Do these make sense? Other than row and column average, are there any other features you could think of that
would preserve some spatial information?

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week3/week3_homework/?activate_block_id=block-v1%3A... 16/16
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This homework does not provide Python code. Instead, we encourage you to write your own code to help you answer some of
these problems, and/or to test and debug the code components we do ask for. Some of the problems below are simple
enough that hand calculation should be possible; your hand solutions can serve as test cases for your code. You may also find
that including utilities written in previous labs (like an sd or signed distance function) will be helpful, as you build up additional
functions and utilities for calculation of margins, different loss functions, gradients, and other functions needed for margin
maximization and gradient descent here.

For your convenience, we have copied the hands-on section into a colab notebook,

1) Margin

When we train a classifier, it is desirable for the classifier to have a large margin with regard to the points in our data set, in the
hope that this will make the classifier more robust to any new points we might see.

We have previously defined the margin of a single example (a single data point) with respect to a separator, but that does not
directly indicate whether a separator will perform well on a large data set. Thus, we would like to find a score function S for a
separator (@, 0y ), such that maximizing .S leads to a better separator.

Marge Inovera suggests that because big margins are good, we should maximize the sum of the margins. So, she defines:

Ssum 6 00 27 0 00)

Minnie Malle suggests that it would be better to just worry about the points closest to the margin, and defines:

Simin(8,60) = miny(z?, 5,0, 6y).

Maxim Argent suggests:

Smaz (6, 60) = maxy(z"",y", 0, 6y).

Recall that the margin of a given point is defined as

y(0-x+6p)

’Y(m’y)eae()) = ||0||

Consider the following data, and two potential separators (red and blue).

data = np.array([[1, 2, 1, 2, 10, 10.3, 10.5, 10.7],
[1, 1, 2, 2, 2, 2, 2,21D

labels = np.array([[-1, -1, 1, 1, 1, 1, 1, 1]])

blue_th = np.array([[0, 1]]).T

blue_the = -1.5

red_th = np.array([[1, 0]]).T

red_the = -2.5

The situation is illustrated in the figure below.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4_homework/?activate_block_id=block-v1%3AM... 1/20
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+++

1A) What are the values of each score (Ssum, Smin, Smaz) On the red separator?

10

12

Enter a Python list of three numbers. [31.5,-1.5, 8.2]

‘ ’ ‘ ’ ‘ ’ 100.00%

You have infinitely many submissions remaining.

1B) What are the values of each score (Ssym, Smin, Smaz) On the blue separator?

Enter a Python list of three numbers. [4, 0.5, 0.5]

‘ ’ ‘ ’ ‘ ’ 100.00%

You have infinitely many submissions remaining.

1C) Which of these separators maximizes Sg,?

Choose one: red v
H 100.00%

You have infinitely many submissions remaining.

1D) Which separator maximizes Sin?

Choose one: blue v
H 100.00%

You have infinitely many submissions remaining.

1E) Which separator maximizes S,,q,?

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4d _homework/?activate_block_id=block-v1%3AM...
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Choose one: red v
H 100.00%

You have infinitely many submissions remaining.

1F) Which score function should we prefer if our goal is to find a separator that generalizes better to new data?

Choose one: |S_min v

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

2) What a loss

Based on the previous part, we've decided to try to find a linear separator #, 8y that maximizes the minimum margin (the
distance between the separator and the points that come closest to it.) We define the margin of a data set (X, Y), with

respect to a separator as

’Y(X’ Y’ 0> 00) = II]:LlIl’)/(JT(Z),y(l),e, 00)

As discussed in the notes, an approach to this problem is to specify a value 7,¢f for the margin of the data set, and then seek to
find a linear separator that maximizes yyf.

2A) We can think about a (not necessarily maximal) margin -y, for the data set as a value such that:

O for at least one point (), 4@, we have y(z®,y),8,60) > 7,
® for every point (), 4@, we have y(z®, 4, 0,8y) > 7,
O for at least one point (), 4@, we have y(z®, ¥, 0,6p) < v,ef
O for every point (), y®, we have y(z®, 3@, 6, 8y) < Vref

‘ ’ ‘ ’ ‘ ’ 100.00%

You have infinitely many submissions remaining.
\ J

2B) Suppose for our data set we find that the maximum ;.. across all linear separators is 0.

Is our data linearly separable? |[No v

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

2C) For this subproblem, assume that 7yt > 0 (i.e,, the data is linearly separable). Note that in this case, the Perceptron
algorithm is guaranteed to find a separator that correctly classifies all of the data points.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4_homework/?activate_block_id=block-v1%3AM... 3/20
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What is the largest minimum margin guaranteed by running the Perceptron algorithm on a data set that has a
maximum margin equal to Ypef > 07

00
O oo
O'Yref

® some € wheree > 0

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

Now we want to improve on the (infinitesimally small) guaranteed margin of the Perceptron algorithm. We saw in the lecture
that a powerful way of designing learning algorithms is to describe them as optimization problems, then use relatively general-
purpose optimization strategies to solve them.

A typical form of the optimization problem is to minimize an objective that has the form

J(0,6y) = ZL ),0,60) + AR(6,6,)

where L is a per-point loss function that characterizes how much error was made by the hypothesis (8, 6y) on the point, and R
is a regularizer that describes some prior knowledge or general preference over hypotheses.

We first consider the objective of finding a maximum-margin separator using the format above, using the so-called "zero-
infinity" loss, L oo

oo if’Y(a"’y>0,00) < Yref

Looo (7(2,y,6,60), Yrer) = 0 otherwise

and

Jo,oo(6,600) = ZLOOO y.6,60) + AR(6,6)).

2D) For a linearly separable data set, positive A, and positive R given nonzero 6, what is true about the minimal value of

Jo.co ?

Which of the following is true: Itis always finite and positive v

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

2E) For a non linearly separable data set, and positive A and Yref What is true about the minimal value of Jo,ooi

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4_homework/?activate_block_id=block-v1%3AM... 4/20
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Which of the following is true: Itis infinite v

‘ ’ ‘ ’ ‘ ’ 100.00%

You have infinitely many submissions remaining.

3) Simply inseparable

We would prefer a loss function that helps steer optimization toward a solution, in the case when the data is linearly separable.
Furthermore, in real data sets it is relatively rare that the data is linearly separable, so our algorithm should be able to handle
this case also and still work toward an optimal, though imperfect, linear separator. Instead of using (0, 00) loss, we should
design a loss function that will let us "relax" the constraint that all of the points have margin bigger than ,.f, while still
encouraging large margins.

The hinge loss is one such more relaxed loss function; we will define it in a way that makes a connection to the problem we are

facing:

Lh <7(way70a00)> — 1- M if7(x7y707 60) < Yref

Yref
Yref 0 otherwise

When the margin of the point is greater than or equal to s, we are happy and the loss is 0; while when the margin is less
than 7y,..f, we have a positive loss that increases the further away the margin is from 7.f.

3A) Given this definition, if ;s is positive what can we say about Ly, ('y(m, y,0, 90)/’Yref), no matter what finite values 8 and
0, take on?

Which of the following is true about Ly Itis always >= 0 v

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

Here is a separator and three points. The dotted lines represent the margins determined by yef.

data = np.array([[1.1, 1, 4],[3.1, 1, 2]])
labels = np.array([[1, -1, -1]])

th = np.array([[1, 1]]).T

the = -4

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4_homework/?activate_block_id=block-v1%3AM... 5/20
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3B) What is L (Y(z, y, 8, 00) /Yref) for each point, where 7,.; = v/2/27? Enter the values in the same order as the respective

points are listed in data. You can do this computationally or by hand.
( 2\
Enter the three hinge loss values in order as a Python list of three numbers:
[0.8,0, 3]
[ J oo | v ] 0000%
You have infinitely many submissions remaining.
N J

4) It hinges on the loss

Putting hinge loss and regularization together, we can look at regularized average hinge loss:

We on

’yref

1 & OV ONN 1
_ZLh (7(1: Y 0)>+>‘T
n =1 VYref

ly need to minimize this over two parameters 8, 6, since the third parameter 7y, can be expressed as ﬁ as they both

represent the distance from the decision boundary to the margin boundary. Plugging in y;er = ot H and also expanding 7y, we

arrive at the

J(8,6y) = ZLh @ 0T 2D +6y)) + A[|0))2

4A) If the data is linearly separable and we use the SVM objective, if we now let A = 0 and find the minimizing values of 8, 6y,

what will happen?

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4_homework/?activate_block_id=block-v1%3AM... 6/20
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Which of the following is true: The minimal objective value will be 0 v

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

4B) Consider the following plots of separators. They are for X values of 0 and 0.001. Match each A to a plot.

] 6: ([-0.0737901],[ 2.40847205]), ] 6: ([-0.23069578][ 2.55735501]),

35 - By: -3.492621154916483 35 4 By: -3.3857770692522666

3.0 1 3.0

2.5 I 2.5 *

2.0 1 l + 2.0 7 +

15 15—;_______________j————--—"'_____-

1.0 A - - 1.0 - -

057 0.5

0.0 % : : : r 00+ : : i :
0 1 2 3 4 0 1 2 3 4

A B
e A

Enter a Python list with the values of A for the two graphs above (i.e., [1ambdaA, lambdaB]).
[0.001, 0]

You have infinitely many submissions remaining.

-

Solution: [0.001, 0.0]

Explanation:

The separators in both plot A and plot B achieve zero hinge loss (for some ). (Note: this is not
immediately obvious; one needs to plug in the numbers to confirm at least for non-zero lambda.
Remember that even if a separator has no errors, there may still be non-zero hinge loss if some of the
correctly classified points are "too close" to the separator (within the margin).

With zero hinge loss in these plots, the operative term in the cost function becomes A||6]|>.
Considering the norm of the 6 vector in the two cases, for plot A the norm of 8 is 2.4096, while for plot
B the norm of 6 is 2.5677. So plot A has non-zero A operating to shrink 8, while plot B has zero A
allowing the norm of @ in plot B to be bigger.

- J

4C) Consider the following three plots of separators. They are for A values of 0, 0.001, and 0.03. Match to the plot.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4_homework/?activate_block_id=block-v1%3AM... 7/20



3/29/2021

6.036 Spring 2019

4.0 4.0 4.0 1

6: ([ 0.01280916],[-1.42043497]), 8: ([ 0.45589866],[-4.50220738]), 8: ([ 0.04828952)[-4.13159675]),
354 6o: 2.387955038624247 35 4 8): 5.056803830699447 35 4 8): 5.110597526206023
3.0 1 - - - 3.0 q - - - 3.0 4 - - -
2.5 2.5 2.5 4
2.0 2.0 1 2.0

1.5 - 15 ,/ 1.5 A -
+ * +

1.0 4 1.0 + X + 1.0 + T +

0.5 1 0.5 l 0.5 |

0'07\ T T T T 0'07\ T T T 0'(’7|

Enter a Python list with the values of A for the three graphs above (i.e., [1ambdaA, lambdaB, lambdaC]).
[0.03, 0, 0.001]

You have infinitely many submissions remaining.

~

Solution: [0.03, 0.0, 08.001]

Explanation:

When we increase A, we penalize larger values of 6. In some cases, the may mean we incur non-zero or
larger hinge loss (where points are closers to the separator, or even where some points are
misclassified).

Plot A has minimized 6 to the degree that a point is misclassified; this corresponds to the largest value
of A, 0.3. (Note that for Plot A,
negative, -2.0735).

|| = 1.4205, average hinge loss is 0.1861, and the margin is

Plot B, in contrast, has the largest ||9 , corresponding to the smallest A, or A = 0. (Note that for Plot

BI

6|| = 4.525, average hinge loss is 0, and the margin is positive, 0.2233.)

Finally, for Plot C we see that again zero hinge loss can be achieved, but here a non-zero A = 0.001
|| = 4.1319,
average hinge loss is 0, and the margin is positive, 0.2455, slightly larger than in Plot B.)

has acted to reduce ||@|| or equivalent increase the margin. (Note that for Plot C,

Another observation we may make is that when A = 0, only the hinge loss term remains, so we only
care to linearly separate the data. Since the data are separable, the optimization process will find a
separator that perfectly separates the data. This gives us either B or C could correspond to A = 0 from
visual inspection. To choose between them for which corresonds to A = 0 or A very small, we have to
look more closely at the corresponding margin or norm of 6.

5) Linear Support Vector Machines

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4d _homework/?activate_block_id=block-v1%3AM...
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The training objective for the Support Vector Machine (with slack) can be seen as optimizing a balance between the average
hinge loss over the examples and a regularization term that tries to keep 6 small (or equivalently, increase the margin). This
balance is set by the regularization parameter A. Here we only consider the case without the offset parameter 6 (setting it to
zero) and rewrite the training objective as an average so that it is given by

n

1 & , , A 1 & : ) A
— @ 9.0 Z16l12 = @ 9.0 2110112
2 o Lal?0-20) | + el = 53 [Lh(y 0.0+ j0l

where Ly, (y(6 - )) = max{0,1 — y(0 - )} is the hinge loss. (Note that we will also sometimes write the hinge loss as
Ly (v) = max(0,1 — v).) Now we can minimize the above overall objective function with the Pegasos algorithm that
iteratively selects a training point at random and applies a gradient descent update rule based on the corresponding term
inside the brackets on the right hand side.

In this problem we will optimize the training objective using a single training example, so that we can gain a better
understanding of how the regularization parameter, J\, affects the result. To this end, we refer to the single training example as
the feature vector and label pair, (x, y). We will then try to find a € that minimizes

T0) = Luw(0-)) + 1161

In the next subparts, we will try to show that the @ minimizing Jl, denoted é is necessarily of the form
- nyx
for some real 7 > 0.

In the expressions below, you can use lambda to stand for A, x to stand for x, transpose(x) for transpose of an array, norm(x)
for the length (norm) of a vector, x@y to indicate a matrix product of two arrays, and x*y for elementwise (or scalar) multiply.

5A) Consider first the case where the loss is positive: L (y(6 - )) > 0. We can minimize J; with respect to 6 by computing a
formula for its gradient with respect to #, and then solving for the @ for which the gradient is equal to 0. Let us denote that
value as 6.

Enter an expression for 6: y*x/lambda

] Lo ] g J o0

You have infinitely many submissions remaining.

5B) Now find the smallest (in the norm sense) 8 for which Ly(y(@-x))=0.

Note: Be careful -- you cannot simply divide by a vector!

Enter your answer as a Python expression: @ = x/norm(x)**2/y

} ‘ } ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4_homework/?activate_block_id=block-v1%3AM... 9/20
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Note that if the hinge loss is zero, the point is correctly classified.

5C) Let & = A()) be the minimizer of J} (6). Is it possible to pick a value for A so that the training example &, y wil be
misclassified by 8(\)?

To answer this question, recall that a point is misclassified when y(6 - ) < 0. Use your result from part 5A where you found
the 6 that minimizes J} (0) to write an expression for y(6 - z) in terms of z, y and .

For € that minimizes J} (@), enter an expression for y(é - z):

norm(x)**2/lambda

‘ } ‘ ’ ‘ ’ 100.00%

You have infinitely many submissions remaining.
. J

5D)

- N
Under what conditions is (6 - ) < 07 Select all that are true.

z=0

Oy<O0

Oy>0

O A=0

A =00

‘ ’ ‘ ’ ‘ ’ 100.00%

You have infinitely many submissions remaining.

5E) You will notice that if y(6 - ) < 0, then € will misclassify . The above result shows that our optimal classifier 6 won't
misclassify (except in edge cases); however, we might still be concerned about correctly classified points that are "too close" to
the separator, and thereby increase our regularized loss function.

Suppose we have a linear classifier described by 6. We say a correctly classified datapoint &, 9 is on the margin boundary of
the classifier if

When a classifier is determined by minimizing a regularized loss function with a single training example, like J} above, too
much regularization can result in a classifier that puts a correctly classified training point inside the margin, and thus incur hinge

loss. That is, if we have a single training example (z, y) and regularize with a A that is too large, we may discover that y(8 -
x) < 1. Fortunately, for this single training example case, we can ensure that A is not too large.

e N
Write an expression for the maximum value of ), in terms of  and y, that ensures that the (z, y) example is NOT

inside the margin: norm(x)**2

] ‘ ] ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.
. J
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So, where are we? We now have a good objective function, the SVM objective, that will strive to correctly classify data points,
but also seek to maximize the margin (minimize the norm of #), given a judicious choice of lambda. This objective function
can be used in either batch optimization (calculating average losses across the whole data set), or on a data point by data point
basis. This gives us powerful flexibility in optimizing (minimizing) this objective function using gradient descent, which we will
consider next.

6) Implementing gradient descent

In this section we will implement generic versions of gradient descent and apply these to the SVM objective.

Reminder: For your convenience, we have copied the hands-on section into a colab notebook,

6.1) Gradient descent

Note: If you need a refresher on gradient descent, you may want to reference

We want to find the 2 that minimizes the value of the objective function f (), for an arbitrary scalar function f. The function f
will be implemented as a Python function of one argument, that will be a numpy column vector. For efficiency, we will work
with Python functions that return not just the value of f at f(z) but also return the gradient vector at z, that is, V, f(z).

We will now implement a generic gradient descent function, gd, that has the following input arguments:

e f:a function whose input is an x, a column vector, and returns a scalar.

e df:a function whose input is an x, a column vector, and returns a column vector representing the gradient of £ at x.
e x0: an initial value of x, x0, which is a column vector.

e step_size_fn: a function that is given the iteration index (an integer) and returns a step size.

e max_iter:the number of iterations to perform

Our function gd returns a tuple:

e x:the value at the final step
e fs:the list of values of £ found during all the iterations (including f(xe))
e xs: the list of values of x found during all the iterations (including xe)

Hint: This is a short function!

Hint 2: If you do temp_x = x where x is a vector (numpy array), then temp_x is just another name for the same vector as x and
changing an entry in one will change an entry in the other. You should either use x.copy() or remember to change entries back
after modification.

Some test or example functions that you may find useful are included below. You may also find rv and cv (from previous
weeks) useful, though not necessary.

def f1(x):
return float((2 * x + 3)**2)

def df1(x):
return 2 * 2 * (2 * x + 3)

def f2(v):
x = float(v[@]); y = float(v[1])

return (x - 2.) * (x - 3.) * (x + 3.) * (x + 1.) + (X +y -1)**2

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4_homework/?activate_block_id=block-v1%3A... 11/20
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def df2(v):
x = float(v[@]); y = float(v[1])

return cv([(-3. + x) * (-2. + x) * (1. + x) + \
(-3. + x) * (-2. + x) * (3. +x) +\
(-3. + x) * (1. + x) * (3. +x) +\
(-2, + x) * (1. + x) * (3. +x) +\
2 * (-1, + X +Y),
2% (-1, + x +y)])

To evaluate results, we also use a simple package_ans function, which checks the final x, as well as the first and last values in fs,

XS.

def package_ans(gd_vals):
x, fs, xs = gd_vals
return [x.tolist(), [fs[@], fs[-1]], [xs[@].tolist(), xs[-1].tolist()]]

The test cases are provided below, but you should feel free (and are encouraged!) to write more of your own.

# Test case 1
ans=package_ans(gd(f1, dfl, cv([0.]), lambda i: 0.1, 1000))

# Test case 2
ans=package_ans(gd(f2, df2, cv([@., ©0.]), lambda i: ©.01, 1000))

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4_homework/?activate_block_id=block-v1%3A... 12/20



3/29/2021 6.036 Spring 2019

1 def gd(f, df, x0, step_size fn, max_iter):

2

3 #itinitialize some paramaters

4 num_iter = ©

5 list_x = []

6 list f = []

7 #copy the input so we dont modify it on each iter
8 X = x0.copy()

9 #exceute updates intil we reach out max num of updates
10 while num_iter < max_iter:
11 #calculate the current gradient
12 grad = df(x)
13 list x.append(x)
14 list_f.append(f(x))

1= Hnavt coalartinn ic +tha rFriinnant - t+ha aradiant +imac a cton ciza
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p
Here is the solution we wrote:

def gd(f, df, x0, step_size_fn, max_iter):

prev_x = x0

fs = [1; xs =[]

for i in range(max_iter):
prev_f, prev_grad = f(prev_x), df(prev_x)
fs.append(prev_f); xs.append(prev_x)
if i == max_iter-1:

return prev_x, fs, xs

step = step_size_fn(i)
prev_x = prev_x - step * prev_grad

6.2) Numerical Gradient

Getting the analytic gradient correct for complicated functions is tricky. A very handy method of verifying the analytic gradient
or even substituting for it is to estimate the gradient at a point by means of finite differences.

Assume that we are given a function f(z) that takes a column vector as its argument and returns a scalar value. In gradient
descent, we will want to estimate the gradient of f at a particular .

The 3" component of V,, f(zg) can be estimated as

fzo +0°) — f(zo — &)
20

th

where &' is a column vector whose i coordinate is §, a small constant such as 0.001, and whose other components are zero.

Note that adding or subtracting &% is the same as incrementing or decrementing the ith component of xy by 4, leaving the
other components of y unchanged. Using these results, we can estimate the ith component of the gradient.

For example, if g = (1, 1,..., 1)T and § = 0.01, we may approximate the first component of V, f(z¢) as

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4_homework/?activate_block_id=block-v1%3A... 13/20
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f((1,1,1,...)T 4+ (0.01,0,0,...)") — f((1,1,1,...)" — (0.01,0,0,...)T)
2.0.01 '

(We add the transpose so that these are column vectors.) This process should be done for each dimension independently,
and together the results of each computation are compiled to give the estimated gradient, which is d dimensional.

Implement this as a function num_grad that takes as arguments the objective function f and a value of delta, and returns a new
function that takes an x (a column vector of parameters) and returns a gradient column vector.

Note: As in the previous part, make sure you do not modify your input vector.

The test cases are shown below; these use the functions defined in the previous exercise.

x = cv([0.])
ans=(num_grad(f1)(x).tolist(), x.tolist())

x = cv([0.1])
ans=(num_grad(f1)(x).tolist(), x.tolist())

x = cv([0., 0.])
ans=(num_grad(f2)(x).tolist(), x.tolist())

x = cv([0.1, -0.1])
ans=(num_grad(f2)(x).tolist(), x.tolist())

4 N\
1 def num_grad(f, delta=0.001):
2 def df(x):
3 x_temp = x.copy()
4 d, n = x.shape
5 grad = np.zeros((d, 1))
6
7 for row in range(d):
8 increment = np.zeros((d,1))
9 increment[row, 0] = delta
10 grad_row = (f(x + increment) - f(x - increment))/(2*delta)
11 grad[row, @] = grad_row
12 return grad
13 return df
14

[ ) ) e e ) v 000

You have infinitely many submissions remaining.

A faster (one function evaluation per entry), though sometimes less accurate, estimate is to use:

f(zo +0") — f(=0)
0

for the i component of V, f(xg).

6.3) Using the Numerical Gradient

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4_homework/?activate_block_id=block-v1%3A... 14/20
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Recall that our generic gradient descent function takes both a function f that returns the value of our function at a given point,
and df, a function that returns a gradient at a given point. Write a function minimize that takes only a function f and uses this

function and numerical gradient descent to return the local minimum. We have provided you with our implementations of

num_grad and gd, so you should not redefine them in the code box below. You may use the default of delta=e.e01 for num_grad.

Hint: Your definition of minimize should call num_grad exactly once, to return a function that is called many times. You should

return the same outputs as gd.

The test cases are:

ans = package_ans(minimize(f1, cv([0.]), lambda i: 0.1, 1000))

ans = package_ans(minimize(f2, cv([@., ©.]), lambda i: ©.01, 1000))

1 def minimize(f, x0, step_size fn, max_iter):

2 #itinitialize some paramaters

3 num_iter = 0

4 list x = []

5 list f = []

6 #copy the input so we dont modify it on each iter
7 X = x0.copy()

8 num_grad_func = num_grad(f)

9 #exceute updates intil we reach out max num of updates
10 while num_iter < max_iter:

11 #calculate the current gradient

12 grad = num_grad_func(x)

13 list x.append(x)

14 list_f.append(f(x))

1= Hnavt calartinn ic tha rFriinrant - t+hoa aradiant +imac o cton civa

| | H ro0.00%
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7) Applying gradient descent to SVM objective

Now that we've implemented gradient descent in the general case, let's go back to hinge loss and the SVM objective. Our goal

in this section will be to derive and implement appropriate gradient calculations that we can use with gd for optimization of the

SVM objective. In the derivations below, we'll consider linear classifiers with offset, i.e., 6, 8.
Recall that hinge loss is defined as:

1-v ifo<l

Ly(v) =
(V) 0 otherwise

This is usually implemented as:

hinge(v) = max(0,1 — v)

The hinge loss function, in the context of our problem, takes in the distance from a point to the separator as x. This loss
function helps us penalize a model for leaving points within a distance to our separator:

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4d _homework/?activate_block_id=block-v1%3A...
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1—y@-xz+6y) ify(@-z+6) <1

otherwise

The SVM objective function incorporates the mean of the hinge loss over all points and introduces a regularization term to this
equation to make sure that the magnitude of @ stays small (and keeps the margin large). Note that we have used A instead of
% for simplicity (and without loss of generality).

1 < , ,
J(6,600) = |~ > Lu® (029 +6,)) | + A6
i=1

We're interested in applying our gradient descent procedure to this function in order to find the 'best' separator for our data,
where 'best' is measured by the lowest possible SVM objective.

7.1) Calculating the SVM objective

Implement the single-argument function hinge, which computes Ly, and use that to implement hinge loss for a data point and
separator. Using the latter function, implement the SVM objective. Note that these functions should work for matrix/vector
arguments, so that we can compute the objective for a whole dataset with one call.

Notethat x isd X n, yisl X n, thisd X 1, the is1 X 1, 1am is a scalar.
Hint: Look at np.where for implementing hinge.

In the test cases for this problem, we'll use the following super_simple_separable test dataset and test separator for some of
the tests. A couple of the test cases are also shown below.

def super_simple_separable():
X = np.array([[2, 3, 9, 12],
[5, 2, 6, 511)
y = np.array([[1, -1, 1, -1]])
return X, y

sep_e_separator = np.array([[-0.40338351], [1.1849563]]), np.array([[-2.26910091]])
# Test case 1

x_1, y 1 = super_simple_separable()

thl, thl_© = sep_e_separator

ans = svm_obj(x_1, y_1, thl, thi_eo, .1)

# Test case 2
ans = svm_obj(x_1, y_1, thl, thl_0, 0.9)

Note: In this section, you will code many individual functions, each of which depends on previous ones. We strongly
recommend that you test each of the components on your own to debug.
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1 def hinge(v):

2 #hinge loss calculate for each data point so v is 1xn
3 return np.where(v>0, v, 0)

4

5 # x is dxn, y is 1xn, th is dx1, the is 1x1

6 def hinge_loss(x, y, th, the):

7 return 1 - y * (np.dot(th.T, x) + the)

8

9 # x is dxn, y is 1xn, th is dx1, the is 1x1, lam is a scalar
10 def svm_obj(x, y, th, the, lam):

11 d, n = x.shape
12 loss_list = np.zeros((1, n))
13 for col in range(n):
14 h_loss = hinge_loss(x[:, col:col+l], y[©@, col], th, the)
15 loss_list[@, col] = h_loss
16
17 loss_list = hinge(loss_list)
18 reg _loss = lam * (np.linalg.norm(th)**2)
19
20 return np.sum(loss_list)/n + reg loss
21

You have infinitely many submissions remaining.

~
Here is the solution we wrote:

def hinge(v):
return np.where(v >= 1, 0, 1 - v)

def hinge_loss(x, y, th, the):
return hinge(y * (np.dot(th.T, x) + the))

def svm_obj(X, y, th, the, lam):
return np.mean(hinge_loss(X, y, th, the)) + lam * np.linalg.norm(th) ** 2

7.2) Calculating the SVM gradient

Define a function svm_obj_grad that returns the gradient of the SVM objective function with respect to 8 and 6 in a single
column vector. The last component of the gradient vector should be the partial derivative with respect to 6. Look at np.vstack
as a simple way of stacking two matrices/vectors vertically. We have broken it down into pieces that mimic steps in the chain
rule; this leads to code that is a bit inefficient but easier to write and debug. We can worry about efficiency later.

Some test cases that may be of use are shown below:

X1 = np.array([[1, 2, 3, 9, 10]])
yl = np.array([[1, 1, 1, -1, -1]])
thl, thl@ = np.array([[-©.31202807]]), np.array([[1.834 1D
X2 = np.array([[2, 3, 9, 12],
[5, 2, 6, 5]1)
y2 = np.array([[1, -1, 1, -1]])
th2, th2@=np.array([[ -3., 15.]1).T, np.array([[ 2.]1)

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week4/week4_homework/?activate_block_id=block-v1%3A... 17/20
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d_hinge(np.array([[ 71.]])).tolist()
d_hinge(np.array([[ -23.]])).tolist()
d_hinge(np.array([[ 71, -23.]])).tolist()

d_hinge_loss_th(X2[:,0:1], y2[:,0:1], th2, th20).tolist()
d_hinge_loss_th(X2, y2, th2, th20).tolist()
d_hinge_loss_the(X2[:,0:1], y2[:,0:1], th2, th20).tolist()
d_hinge_loss_tho(X2, y2, th2, th20).tolist()

d_svm_obj_th(X2[:,0:1], y2[:,0:1], th2, th20, 0.01).tolist()
d_svm_obj_th(X2, y2, th2, th2o, 0.01).tolist()
d_svm_obj_the(X2[:,0:1], y2[:,0:1], th2, th20, 0.01).tolist()
d_svm_obj_the(x2, y2, th2, th2e, 8.01).tolist()

svm_obj_grad(X2, y2, th2, th20, 0.01).tolist()
svm_obj_grad(X2[:,0:1], y2[:,0:1], th2, th20, 0.01).tolist()

Note: In this section, you will code many individual functions, each of which depends on previous ones. We strongly
recommend that you test each of the components on your own to debug.

~

22

# Returns the gradient of hinge(v) with respect to v.
def d_hinge(v):
return np.where(v<1l, -1, 0)

# Returns the gradient of hinge loss(x, y, th, the) with respect to th
def d_hinge_loss_th(x, y, th, the):
return y * x * d_hinge(y * (np.dot(th.T, x) + the))

# Returns the gradient of hinge loss(x, y, th, the) with respect to tho
def d_hinge_loss_the(x, y, th, the):
return y * d_hinge(y * (np.dot(th.T, x) + the))

# Returns the gradient of svm_obj(x, y, th, the) with respect to th
def d_svm_obj_th(x, y, th, the, lam):
return np.mean(d_hinge_loss_th(x, y, th, the), axis = 1, keepdims = True) + 2*lam*
# Returns the gradient of svm_obj(x, y, th, the) with respect to the
def d_svm_obj_the(x, y, th, tho, lam):
return np.mean(d_hinge_loss_tho(x, y, th, the), axis = 1, keepdims = True)

# Returns the full gradient as a single vector (which includes both th, the)
def svm_obj_grad(x, y, th, the, lam):
return np.vstack((d_svm obj_th(x, y, th, the, lam), d_svm _obj the(x, y, th, the, 1

H H H 100.00%

N
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7.3) Batch SVM minimize

Putting it all together, use the functions you built earlier to write a gradient descent minimizer for the SVM objective. You do
not need to paste in your previous definitions; you can just call the ones defined by the staff. You will need to call gd, which is

already defined for you as well; your function batch_svm_min should return the values that gd does.

¢ Initialize all the separator parameters to zero,
o use the step size function provided below, and
e specify 10 iterations.

Test cases are shown below, where an additional separable test data set has been specified.

def separable_medium():
X = np.array([[2, -1, 1, 1],
[-2, 2, 2, -1]])
y = np.array([[1, -1, 1, -1]])
return X, y
sep_m_separator = np.array([[ 2.69231855], [ ©.67624906]]), np.array([[-3.02402521]])

x_1, y_1 = super_simple_separable()
ans = package_ans(batch_svm_min(x_1, y 1, ©.0001))

x_1, y_1 = separable_medium()
ans = package_ans(batch_svm_min(x_1, y 1, 0.0001))

p
1 def batch_svm_min(data, labels, lam):
2 def svm_min_step_size fn(i):
3 return 2/(i+1)**0.5
4 d, n = data.shape
5 th = np.zeros((d+1, 1))
6
7 def f(th):
8 return svm_obj(data, labels, th[:-1, :], th[-1:, :], lam)
9
10 def df(th):
11 return svm_obj_grad(data, labels, th[:-1, :], th[-1:, :], lam)
12
13
14 return gd(f, df, th, svm_min_step_size fn, 10)
| JLseor | H | 10000%
You have infinitely many submissions remaining.
.

7.4) Numerical SVM objective (Optional)

Recall from the previous question that we were able to closely approximate gradients with numerical estimates. We may apply

the same technique to optimize the SVM objective.
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Using your definition of minimize and num_grad from the previous problem, implement a function that optimizes the SVM
objective through numeric approximations.

How well does this function perform, compared to the analytical result? Consider both accuracy and runtime.
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You may find the lecture notes on helpful as you do this homework.

1) Intro to linear regression

So far, we have been looking at classification, where predictors are of the form

39 = sign(0T2®) + 6;)

where gj(i) is our prediction of the corresponding label y(i) making a binary classification as to whether example 2 belongs
to the positive or negative class of examples.

In many problems, we want to predict a real value, such as the actual gas mileage of a car, or the concentration of some
chemical. Luckily, we can use much of the mechanism we have already developed, and make predictors of the form:

g% =0Tz + g,

This is called a linear regression model.

We would like to learn a linear regression model from examples. Assume X is a d by n array (as before) but that Y isa 1 by n
array of floating-point numbers (rather than +1 or -1). Given data (X, Y") we need to find 6, 8 that does a good job of
making predictions on new data drawn from the same source.

We will approach this problem by formulating an objective function. There are many possible reasonable objective functions
that implicitly make slightly different assumptions about the data, but they all typically have the form:

J(0,6y) = ZL ),0,60) + AR(6,6,)

For regression, we most frequently use squared loss, in which

Ly(«?,y9,6,00) = (§¥ —y@)* = (672 + 6, —y@)”

We might start by simply trying to minimize the average squared loss on the training data; this is called the empirical risk or
mean square error:

n

1 . .
Jemp(ea 00) - E ZLs(w(l)ay(l)aea 00) .

i=1
Later, we will add in a regularization term.

We will see later in this assignment that we can find a closed form matrix formula (requiring a matrix inverse) for the optimal 6
in a linear regression formula. Being able to solve a machine-learning problem in closed form is very awesome! But inverting a
matrix is computationally expensive (a bit less than O(m3) where m is the dimension of our matrix), and so, as our data sets
get larger, we will need to find some more efficient or approximate ways to approach the problem.

For your convenience, we have copied the hands-on section into a colab notebook, You can
alternatively fill in these functions in code_for_hws.py, which is part of (the other files will be useful for the last
part of the homework).
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Let's start by thinking about gradient descent to attack this problem:

1A) What is the gradient of the empirical risk with respect to 7 We can see that it is of the form:

n

1 N
VOJemp(ea 90) - ﬁ Zg(m(z)aym)

i=1
where m(i),y(i) are the ' data point and its label.

Write an expression for g(:):(i) , y(i)) using the symbols: x_i, y_i, theta and theta_e, where g(:l:(i) , y(i)) is the derivative of
the L, function described above with respect to 6. Remember that you can use @ for matrix product, and you can use
transpose(v) to transpose a vector. Note that this g(-) function is just the derivative with respect to a single data point

2 , y(i). We'll build up to the gradient of Je,, in @ moment.

g(x(i) y y(i)) = 2 * (transpose(theta)@x_i +theta_0 - y_i) * x

e | e e et

You have infinitely many submissions remaining.

1B) What is the gradient of the empirical risk now with respect to 6,? We can see that it is of a similar form:

VHO Jemp 0 00 Z gO

Write an expression for go (z (") ()) using the symbols: x_i, y_i, theta and theta_o.

Jo (m(i) y y(i)) = 2 * (transpose(theta)@x_i +theta_0 - y_i)

oo ) ) e e | i) 0085

You have infinitely many submissions remaining.

1C) Next we're interested in the gradient of the empirical loss with respect to 8, VgJemyp, but now for a whole data set X (of
dimensions d by n).

Write an expression for Vg Jey,, using the symbols: x and v for the full set of data, theta, theta_e, and n. Here x has
dimensions d by n, and Y has dimensions 1 by nn. Remember that you can use @ for matrix product, and you can use
transpose(a) to transpose a vector or array.

Vg Jemp = 2/n*X @(transpose(X) @ theta + theta_0 - transpose(Y))

[ | e ey

You have infinitely many submissions remaining.

2) Sources of Error
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Recall that structural error arises when the hypothesis class cannot represent a hypothesis that performs well on the test data
and estimation error arises when the parameters of a hypothesis cannot be estimated well based on the training data. (You can
also refer to here in the notes.)

Following is a collection of potential cures for a situation in which your learning algorithm generates a hypothesis with a high
test error.

For each one, indicate whether it can can reduce structural error, estimation error, both, or neither.

2A) Penalize ||6]|? during training.

-

Can reduce:

O structural error
@ estimation error
O both
O

neither

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

2B) Penalize ||0||? during testing.

N

Can reduce:

O structural error
O estimation error
O both
@

neither

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

2C) Increase the amount of training data.

-

Can reduce:

O structural error
@ estimation error
O both
O

neither

’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

2D) Increase the order of a fixed polynomial basis.
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Can reduce:

@ structural error
O estimation error
O both
O

neither

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

2E) Decrease the order of a fixed polynomial basis.

-

Can reduce:

O structural error
@ estimation error
O both
@)

neither

‘ ’ ‘ ’ ‘ ’ 100.00%

You have infinitely many submissions remaining.

3) Minimizing empirical risk

We can also solve regression problems analytically.

Remember the definition of squared loss,

Ly(z?,4,0,60) = (672 + 6, — yV)?

and empirical risk:

Temp(60,600) = ZL ) 4@ 6,6y)

Later, we will add in a regularization term.

For simplicity in this section, assume that we are handling the constant term, 6, by adding a dimension to the input feature
vector that always has the value 1. To review why this works, take a look at the introduction to problem 1 in HW2.

Let data matrix Z = X 7T be n by d, let target output vector T' = YT be n by 1, and recall that 8 is d by 1. Then we can write
the whole linear regression prediction as Z6.

3A) T is the n by 1 vector of target output values. Write an equation expressing the mean squared loss of @ in terms of Z, T,

n, and . Hint: note that this loss J(6) is a scalar, a sum of squared terms divided by n; we can write it as (WX W) /n for a

column vector W.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week5/week5_homework/?activate_block_id=block-v1%3AM...
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Enter your answer as a Python expression. You can use symbols z, T, n and theta. Recall that our expression syntax includes
transpose(x) for transpose of an array, inverse(x) for the inverse of an array, and x@y to indicate a matrix product of two

arrays.

J(0) = transpose(Z@theta - T)@(Z@theta - T)in
e ey T

You have infinitely many submissions remaining.

Now, how can we find the minimizing @, given Z and T'? Take the gradient (yes, even with a matrix expression), set it to zero(s)

and solve for 6.

3B) What is V¢ J(0) in terms of Z, T, 6, and n? You can use matrix derivatives or, compute the answer for some individual

elements and deduce the matrix form.

Vg J(G) = 2/n *transpose(Z) @ (Z@theta- T)
| I I I 100.00%

You have infinitely many submissions remaining.

3C) What if you set this equation to 0 and solve for 8%, the optimal 82 Hint: It's ok to ignore the constant scaling factor.

o =

O (2'T)"1 (27 Z)
® (Z72)1 2T

O (22%)1zTT

You have infinitely many submissions remaining.

Ve

Solution: (2T Z2)1ZTT

Explanation:

We solve for 6 in % - ZT(Z6 — T) = 0. We first expand this to obtain (ZTZ) 0 — ZTT = 0. This
can then be rewritten (ZTZ) 0 = ZTT. This is then a system of linear equations that can be solved
as@ = (ZTZ) 1 ZTT, as desired.

N

3D) Just converting back to the data matrix format we have been using (not transposed), we have

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week5/week5_homework/?activate_block_id=block-v1%3AM... 5/19
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o =

O (XYT)"L(xxT)
O (XTX)XTy
® (XXT)1xYT

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

(N

3E) Now implement 8* as found in 3D), using symbols x and v for the data matrix and outputs, and np.dot, np.transpose,

np.linalg.inv.

p
1 # Enter an expression to compute and set th to the optimal theta
2 th = np.linalg.inv(X@X.T) @ X @ Y.T
(o) ) oo iy ] 0000
You have infinitely many submissions remaining.
\

4) Adding regularization

Although we don't have the same notion of margin maximization as with the SVM formulation for classification, there is still a

good reason to regularize or put pressure on the coefficient vector € to prevent the model from fitting the training data too

closely, especially in cases where we have few data points and many features.

And, as it happens, this same regularization will help address a problem that you might have anticipated when finding the

analytical solution for 6, which is that xXXxT might not be invertible (where we are using the definition of X as in problem 3,

where each column of X is a d-length vector representing a d-feature sample point and there are n columns in X (or

equivalently, there are n training examples)).

Consider this matrix:

X = nP-aPV‘BY([[l; 21, [2, 31, [3, 51, [1, 4‘]])

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week5/week5_homework/?activate_block_id=block-v1%3AM...
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Is X X7 invertible? If not, what's the problem? Mark all that are true.

It is invertible
It is not invertible because X is not square

It is not invertible because two columns of X are linearly dependent

8 00 O

It is not invertible because the rows of X X7 are linearly dependent

4]

It is not invertible because 1 is smaller than d

O

We cannot compute the transpose of X

You have infinitely many submissions remaining.

p
Solution:

K itisinvertible

¢ Itis not invertible because X is not square

¥ 1t is not invertible because two columns of X are linearly dependent

o/ lItis not invertible because the rows of X X7 are linearly dependent

Q:ff} It is not invertible because 1 is smaller than d

¥ We cannot compute the transpose of X

Explanation:

We can multiply out X X7 to obtain

5 8 13 9

r |8 13 21 14
XXT=113 21 34 23
9 14 23 17

Immediately, we notice that rows 1 and 2 add to row 3, so the rows of X are not linearly independent
(4 is true). Therefore, we conclude that X XT is not full rank, and thus not invertible (1 is false).

For generic X, X X7 may be invertible, even if X is not square; simply consider X’ = X7, where
X°X°T is a full rank 2 by 2 matrix (2 is false). Similarly, X X” may be invertible even if the columns of
X are linearly dependent; consider matrix

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week5/week5_homework/?activate_block_id=block-v1%3AM...
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1 0 1
A= .
( 0 1 0 >
We see that AAT is an invertible 2 by 2 matrix, even though columns 1 and 3 are the same (3 is false).

If nis smaller than d, then X has maximum rank 7, and so X X7 has maximum rank n. Since X X©
is a d by d matrix, where d > n, X X7 is not invertible (5 is true).

Finally, we can calculate X7 for any X, regardless of its rank (6 is false).

-

5) Evaluation

We have been hired by Buy 'n' Large to deliver a predictor of change in sales volume from last year, for each of their stores. We
have a machine-learning algorithm that can be used with regularization parameter A. Our overall objective is to deliver a
predictor that minimizes squared loss on predictions when actually used by the company. We have three data sets: Dyrgin,
Dyest and Dyegl, each of size n. The Dyeqi is owned by the company.

2

We will focus on a linear predictor with parameters 8 without the offset parameter 6 for simplicity and use regularizer A||6|
where A is the regularization parameter. There are several phases of the training process (as represented in problems 5A
through 5D below), and we need to select the appropriate objective for each of those tasks. In the problems below, we will
have different expressions with different "slots" (A, B, C, D) to fill from, picking among the following options available to us
related to

e what the minimization is over,

e the dataset used,

o the predictor used, and

o whether regularization is added.

Fill in the slots (A,B,C,D) for each phase by choosing the expressions for the indicated slots. The available expressions are shown
below; please enter the index for the expression for each of the slots.

1.0
2.0
3. Obest()\),
4.0,
5.\,
6. A*,
706
8. \*||6)]
9. Dtrain,
10. Diest,
1. Dtmin U Dtest,
12. Dreal

2

2

Note that Opest(A) is a value of 6 that is a function of A; 8%, A\* are specific values found as described below; 8 and A are
variables that range over d-dimensional column vectors and positive reals, respectively.

5A) Selecting the best hypothesis (parameters 6) for some fixed value of the regularization parameter A. Call this Hbest()\).

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week5/week5_homework/?activate_block_id=block-v1%3AM... 8/19
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_ 1 T 2
Opest(A) = arg min Izl ( 2)23(0’ z—y)°/2+D
x7y

Enter a list of 4 indices for [A, B, C, D]: [2,9,2,7]

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

5B) Selecting the best value of the regularization parameter A. We will call this best value \*.

1
At = argmjn B Z (CTz —y)?/2+D
(z,y)eB

Enter a list of 4 indices for [A, B, C, D]: [5, 10, 3, 1]
‘ H H 100.00%

You have infinitely many submissions remaining.

5C) Selecting the hypothesis (parameters 6) to deliver to the company. Call this 8*.

1
0* = argmf}n Bl Z (CTz —y)?/2+D
(zy)eB
Enter a list of 4 indices for [A, B, C, D]: [2,9, 2, 8]

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

5D) Evaluating the actual on-the-job performance €* of the selected hypothesis 6*.

€ = = Z (CTz —y)*/2+ D

’ ’ (z,y)eB

Enter a list of 3 indices for [B, C, DI: [12, 4, 1]

‘ ’ ‘ ’ ‘ ’ 100.00%

You have infinitely many submissions remaining.

6) Linear regression - going downhill

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week5/week5_homework/?activate_block_id=block-v1%3AM...
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We will now write some general Python code to compute the gradient of the squared-loss objective, following the structure of
the expression and the rules of calculus. Note that this style of writing the gradient functions maps directly into the chain-rule
steps required to compute the gradient, but produces code that is inefficient, because of duplicated computations. It is
straightforward to implement more efficient versions if you want to use them for larger problems.

Reminder: For your convenience, we have copied the hands-on section into a colab notebook, which may be found here..
Alternatively, you can work with these functions on your own computer in code_for_hw5.py, contained in this zip file. That file
has somewhat longer docstrings and doctests for many of these functions and other basic utiliities, that may be useful to you in
debugging your implementations. (The other files therein will be useful in the last part of this homework).

We start by defining some basic functions for computing the mean squared loss. Note that we want these to work for any value
of n, that is, x could be a single feature vector (of dimension d by 1) or a full data matrix (of dimension d by 1), and similarly
for y.

# In all the following definitions:

# x is d by n : input data

# y is 1 by n : output regression values
# th is d by 1 : weights

# the is 1 by 1 or scalar

def lin_reg(x, th, the):
return np.dot(th.T, x) + the

def square_loss(x, y, th, the):
return (y - lin_reg(x, th, the))**2

def mean_square_loss(x, y, th, theo):

# the axis=1 and keepdims=True are important when x is a full matrix
return np.mean(square_loss(x, y, th, the), axis = 1, keepdims = True)

These functions will already be defined when you are answering the questions below.
Warm up:

6A)

If X isdbynand Y is 1 by n, what is the dimension of §? dby 1 v

‘ H H 100.00%

You have infinitely many submissions remaining.

6B)

If X isdbynandY is 1 by n, what is the dimension of VgJemy(6,60)? dby 1+
‘ H H 100.00%

You have infinitely many submissions remaining.

6C) Now let's compute the gradients with respect to 6, make sure that they work for data matrices and label vectors. You can
write one function at a time, some of the checks will apply to each function independently.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week5/week5_homework/?activate_block_id=block-v1%3A... 10/19
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In the code below, the following values are used in the test cases:

X = np.array([[1., 2., 3., 4.], [1., 1., 1., 1.]])
Y = np.array([[1., 2.2, 2.8, 4.1]])

th = np.array([[1.0],[0.05]])

the = np.array([[0.]])

p

1 # Write a function that returns the gradient of 1lin_reg(x, th, the)

2 # with respect to th

3 def d_lin_reg th(x, th, the):

4 return x

5

6 # Write a function that returns the gradient of square_loss(x, y, th, tho) with

7 # respect to th. It should be a one-line expression that uses lin_reg and

8 # d_lin_reg_th.

9 def d_square_loss_th(x, y, th, the):
10 return 2* (y - lin_reg(x, th, the)) * - d_lin_reg th(x, th, the)
11
12 # Write a function that returns the gradient of mean_square_loss(x, y, th, the) with
13 # respect to th. It should be a one-line expression that uses d_square_loss_th.
14 def d_mean_square_loss_th(x, y, th, the):
15 return np.mean(d_square_loss_th(x, y, th, the), axis = 1, keepdims = True)
16

‘ H H H 100.00%
You have infinitely many submissions remaining.
N

J

6D) Now let's compute the gradients with respect to 6y, make sure that they work for data matrices and label vectors. You can

write one function at a time, some of the checks will apply to each function independently. The test cases will include example

variables for x, v, th, and the from 6C above.

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week5/week5_homework/?activate_block_id=block-v1%3A...
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1 # Write a function that returns the gradient of lin_reg(x, th, the)

2 # with respect to th@. Hint: Think carefully about what the dimensions of the returned
3 def d_lin_reg _tho(x, th, the):

4 d, n = x.shape

5 return np.ones((1,n))

6

7 # Write a function that returns the gradient of square_loss(x, y, th, the) with
8 # respect to the. It should be a one-line expression that uses lin_reg and

9 # d_lin_reg_the.

10 def d_square_loss_tho(x, y, th, the):

11 return 2 * (y - lin_reg(x, th, the)) * - d_lin_reg_tho(x, th, the)

12

13 # Write a function that returns the gradient of mean_square_loss(x, y, th, the) with
14 # respect to th@. It should be a one-line expression that uses d_square loss the.
15 def d_mean_square_loss_the(x, y, th, the):

16 return np.mean(d_square_loss_the(x, y, th, the), axis = 1, keepdims = True)

() ) e ] e ] 0605

You have infinitely many submissions remaining.

7) Going down the ridge

Now, let's add a regularizer. The ridge objective can be implemented as follows:

# In all the following definitions:
# x is d by n : input data
#y is 1 by n : output regression values
# th is d by 1 : weights
# the is 1 by 1 or scalar
def ridge_obj(x, y, th, the, lam):
return np.mean(square_loss(x, y, th, the), axis = 1, keepdims = True) + lam * np.linalg.norm(th)**2

Let's extend our previous code for the gradient of the mean square loss to compute the gradient of the ridge objective with
respect to @. Our previous solutions for the non-ridge case: d_mean_square_loss_th and d_mean_square_loss_the are defined for
you and you can call them. The test cases will include example variables for X, v, th, and the from 6C above.
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1 def d_ridge_obj_th(x, y, th, the, lam):
2 return d_mean_square_loss_th(x, y, th, the) + 2 * lam * th
3
4 def d_ridge_obj_the(x, y, th, the, lam):
5 return d_mean_square_loss_the(x, y, th, the)
6
o ) ) o | oo ] 000
You have infinitely many submissions remaining.

8) Stochastic gradient

We will now implement in a general way, similar to what we did with gradient descent (gd).

sgd takes the following as input: (Recall that the stochastic part refers to using a randomly selected point and corresponding
label from the given dataset to perform an update. Therefore, your objective function for a given step will need to take this into
account.)

e X:a standard data array (d by n)

e y:astandard labels row vector (1 by n)

e J:a cost function whose input is a data point (a column vector), a label (1 by 1) and a weight vector w (a column vector)
(in that order), and which returns a scalar.

e dJ:a cost function gradient (corresponding to 3) whose input is a data point (a column vector), a label (1 by 1) and a
weight vector w (a column vector) (also in that order), and which returns a column vector.

e wo: an initial value of weight vector w, which is a column vector.

e step_size_fn: a function that is given the (zero-indexed) iteration index (an integer) and returns a step size.

e max_iter:the number of iterations to perform

It returns a tuple (like gd):

o w:the value of the weight vector at the final step
e fs:the list of values of J found during all the iterations
* ws: the list of values of w found during all the iterations

Note: w should be the value one gets after applying stochastic gradient descent to we for max_iter-1 iterations (we call this the
final step). The first element of fs should be the value of 3 calculated with we, and fs should have length max_iter; similarly,
the first element of ws should be we, and ws should have length max_iter.

You might find the function np.random.randint(n) useful in your implementation.
Hint: This is a short function; our implementation is around 10 lines.

The test cases are:

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week5/week5_homework/?activate_block_id=block-v1%3A... 13/19
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def downwards_line():
X = np.array([[@.0, 0.1, 8.2, 0.3, 0.42, 0.52, ©.72, 0.78, 0.84, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.9, 1.0, 1.0, 1.08]])
y = np.array([[0.4, 0.6, 1.2, 0.1, .22, -8.6, -1.5, -8.5, -0.5, 0.0]])
return X, y

X, y = downwards_line()

def J(Xi, yi, w):
# translate from (1-augmented X, y, theta) to (separated X, y, th, the) format
return float(ridge_obj(Xi[:-1,:], yi, w[:-1,:], w[-1:,:], 9))

def dJ(Xi, yi, w):
def f(w): return J(Xi, yi, w)
return num_grad(f)(w)

where num_grad is taken from homework from the previous week:

def num_grad(f):
def df(x):
g = np.zeros(x.shape)
delta = 0.001
for i in range(x.shape[0]):
xi = x[i,0]
x[i,0] = xi - delta

xm = f(x)
x[i,0] = xi + delta
xp = f£(x)

x[1,0] = xi
gli,0] = (xp - xm)/(2*delta)

return g

return df

p

17 Xi, yi = get_rnd_xiyi(X, y)
18 #tappend current data points to lists
19 w_list.append(w)
20 J_list.append(J(Xi, yi, w))
21 #tapply the gradient on this data point
22 grad = dJ(Xi, yi, w)
23 #apply the step
24 W =w - step_size_fn(iter) * grad
25 if iter == max_iter-2:
26 #if this is the last iter, we want to add the
27 #w and j at this point without calculating a new w
28 #randomly select a data point
29 Xi, yi = get_rnd_xiyi(X, y)
30 #append current data points to lists
31 w_list.append(w)

(oo ) e ) e v ) o ] onon

You have infinitely many submissions remaining.

9) Predicting mpg values
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We will now try to synthesize the functions we have written in order to perform ridge regression on the auto-mpg dataset from
lab03. Unlike in lab03, we will now try to predict the actual mpg values of the cars, instead of whether they are above or below
the median mpg!

As a reminder, the dataset is as follows:

1. mpg: continuous

2. cylinders: multi-valued discrete
3. displacement: continuous

4. horsepower: continuous

5. weight: continuous

6. acceleration: continuous

7. model year: multi-valued discrete
8. origin: multi-valued discrete
9. car name: string (many values)

For convenience, we will choose to not include model year and car name as features. For the remaining features, we again have
the option to keep the raw values, standardize them, or use a one-hot encoding.

9A) What is true about leaving features as raw versus deciding to standardize them, in the context of linear regression without
regularization?
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The set of all possible linear regression models learnable on standardized features is smaller than the set of
linear regression models learnable on raw features

The theoretical minimum value of the loss function is the same both with raw and standardized features

SGD will typically perform better on standardized features than on raw features.

You have infinitely many submissions remaining.

Solution:

The set of all possible linear regression models learnable on standardized features is smaller than
the set of linear regression models learnable on raw features

5 The theoretical minimum value of the loss function is the same both with raw and standardized
" features

« SGD will typically perform better on standardized features than on raw features.

Explanation:

1. The set of linear regression models is the same, in both cases. Say that 8 and 6 are the parameters
of a predictor operating on standardized features. Then, the prediction for the example x will be g} =
0 - (wgu) + 00, Where wand o represent the standardization. Note that this is the same as § = 6 -

T + 6, where =2 and 90 = 6y — =E. For any fixed u, o, we can vary 6 and 6 to make 6 and 00
equal to whatever values we want. Thus, we can represent any linear predictor with an appropriate
choice of parameters in a linear predictor operating on standardized features.

2. From the explanation for 1, the set of possible models is the same with and without standardization.
Thus, the predictor minimizing the error in both cases will be the same, causing the theoretical
minimum of the loss function to also be the same.

3. At every iteration, SGD takes a step in the direction opposite to the (stochastic) gradient, with the
same step size in each "direction" of parameter space. However, with raw features, you would naturally
want larger step sizes to update parameters which have a larger range, and smaller ones for those
which have a small range. Using a large step size can then often lead to divergence of SGD due to the
parameters with a smaller range; using a small step size can lead to very slow convergence due to
those parameters with a larger range. Standardizing features largely removes this problem, making it
"more acceptable” to use a constant step size across all directions.

9B) What is true about leaving features as raw versus deciding to standardize them, in the context of ridge regression (i.e., we

have a nonzero regularizer)?

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week5/week5_homework/?activate_block_id=block-v1%3A...
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The set of all possible models learnable on standardized features is smaller than the set of models learnable
on raw features

(J The theoretical minimum value of the loss function is the same both with raw and standardized features

SGD will typically perform better on standardized features than on raw features.

You have infinitely many submissions remaining.

Solution:

The set of all possible models learnable on standardized features is smaller than the set of models
learnable on raw features

The theoretical minimum value of the loss function is the same both with raw and standardized
features

« SGD will typically perform better on standardized features than on raw features.

Explanation:

1. The set of learnable models is the set of all linear models, as in the previous question. Thus, the
answer is the same.

2. While the set of learnable models is the same, for raw features, the regularizer penalizes certain
feature weights much more than others. For instance, if the magnitude of a particular feature is very
small in the raw data, the learned weight in the absence of a regularizer might be very large. When
adding regularization, this feature weight will be driven to be closer to 0, so this feature is
disproportionately affected by the regularizer. The optimal weights for both objectives will not then
generically correspond to the same model, and the loss values will be different in both cases.

3. Same reason as in 9A.
g

With this considered, we decide to standardize or one-hot encode all features in this section (we encourage you, though, to try
raw features on your own to see how their performance matches your expectations!).

One additional step we perform is to standardize the output values. Note that we did not have to worry about this in a
classification context, as all outputs were 1. In a regression context, standardizing the output values can have practical
performance gains, again due to better numerical performance of learning algorithms on data that is in a good magnitude
range.

The metric we will use to measure the quality of our learned predictors is Root Mean Square Error (RMSE). This is useful
metric because it gives a sense of the deviation in the nature units of the predictor. RMSE is defined as follows:
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1 <& . )
N (i) — £(z0)
RMSE - ;_1: (y f(z®))

where f is our learned predictor: in this case, f(x) = 6 - = + 6. This gives a measure of how far away the true values are
from the predicted values; we are interested in this value, measured in units of mpg.

Note: One very important thing to keep in mind when employing standardization is that we need to reverse the
standardization when we want to report results. If we standardize output values in the training set by subtracting i and
dividing by o, we need to take care to:

1. Perform standardization with the same values of p and o on the test set (Why?) before predicting outputs using our
learned predictor.
2. Multiply the RMSE calculated on the test set by a factor of o to report test error. (Why?)

Given all of this, we now will try using:
e Two choices of feature set:

1. [cylinders=standard, displacement=standard, horsepower=standard, weight=standard, acceleration=standard,
origin=one_hot]
2. [cylinders=one_hot, displacement=standard, horsepower=standard, weight=standard, acceleration=standard,

origin=one_hot]
e Polynomial features (we will construct the polynomial features after having standardized the input data) of orders 1-3

¢ Different choices of the regularization parameter, A. Although, ideally, you would run a grid search over a large range of
A, we will ask you to look at the choices A = {0.0,0.01,0.02, - - - , 0.1} for polynomial features of orders 1 and 2, and
the choices A = {0, 20,40, - - - , 200} for polynomial features of order 3 (as this is approximately where we found the
optimal A to lie).

We will use 10-fold cross-validation to try all possible combinations of these feature choices and test which is best. We have
attached a code file with some predefined methods that will be useful to you . Alternatively, a google colab link
If you choose to use the code file, a more detailed description of the roles of the files is below:

The file code_for_hws.py contains functions, some of which will need to be filled in with your definitions from this homework.
Your functions are then called by ridge_min, defined for you, which takes a dataset (X, y) and a hyperparameter, A as input
and returns 6 and 6y minimizing the ridge regression objective using SGD (this is the analogue of the svm_min function that
you wrote for homework last week). The learning rate and number of iterations are fixed in this function, and should not be
modified for the purpose of answering the below questions (although you should feel free to experiment with these if you are
interested!). This function will then further be called by xval_learning_alg (also defined for you in the same file), which returns
the average RMSE across all (here, 10) splits of your data when performing cross-validation. (Note that this RMSE is reported in
standardized y units; to convert this to RMSE in mpg (miles per gallon), you should multiply this by the sigma returned by the
hws.std_y function call.)

The file auto.py will be used to implement the auto data regression. The file contains code for creating the two feature sets that
you are asked to work with here. Transforming those features further with make_polynomial_feature_fun, and running the cross-
validation function, which uses your implementations in code_for_hws.py (both from code_for_hw5.py), you should be able to
answer the following questions:

9C) What combination minimizes the average cross-validation RMSE?
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Enter a tuple of three numbers (feature_set, polynomial_order, lambda):
(2,2,0)

You have infinitely many submissions remaining.

Solution: (2, 2, 0.90)

Explanation:

(2, 2, 0.0) gave us the lowest RMSE. We found that A had a relatively modest impact on RMSE, with

small (about zero) values of A giving the best results, for feature set 2 with 2nd order polynomials.
-

9D) What is the cross-validation RMSE value (in mpg) that you obtain using the best combination?

Enter an accuracy value: 3.884

‘ H H 100.00%

You have infinitely many submissions remaining.

9E) Say that we really wanted to fit an order 3 polynomial model using the first feature set. What value of lambda minimizes the
average cross-validation RMSE, and what is the RMSE value at that value of lambda?

Enter a python list of two numbers [lambda, RMSE_value]: [40, 6.02]
‘ H H 100.00%

You have infinitely many submissions remaining.
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This homework builds on the material in the notes on up through and including section 6 on loss functions.

In particular, in this homework we consider neural networks with multiple layers. Each layer has multiple inputs and outputs,

and can be broken down into two parts:

¢ Alinear module that implements a linear transformation: z; = (Zznzl Tiw;j) + wo; specified by a weight matrix W

and a bias vector Wp. The output is [21, . . . , 2n]” .

¢ An activation module that applies an activation function to the outputs of the linear module for some activation function

f. such as Tanh or ReLU in the hidden layers or Softmax (see below) at the output layer. We write the output as: :

[f(21),...,f(zm)]%, although technically, for some activation functions such as softmax, each output will depend on all

the z;, not just one.
We will use the following notation for quantities in a network:

¢ Inputs to the network are x1, ..., Z4.
e Number of layers is L

e There are m! inputs to layer [

e Therearen! = m!*™! outputs from layer [

NE% matrix, and the bias vector (offset) is Wé, ann! x 1 vector

l

¢ The weight matrix for layer [ is W anm
e The outputs of the linear module for layer [ are known as pre-activation values and denoted z

e The activation function at layer [ is f'()

e Layer [ activations are a' = [f'(2}),..., f'(zL)]"
o The output of the network is the values a” = [f¥(2f), ..., f* (sz )E

e Loss function Loss(a,y) measures the loss of output values a when the target is ¥

1) Loss functions and output activations: classification

When doing classification, it's natural to think of the output values as being discrete: +1 and -1. But it is generally difficult to

use optimization-based methods without somehow thinking of the outputs as being continuous (even though you will have to

discretize when it's time to make a prediction).

1.1) Hinge loss, linear activation

When we looked at the SVM objective for classification, we did this:

¢ Defined the output space to be R
e Developed the hinge loss function

0 ifya > 1

Loss(a,y) = Ln(ye) = 1 —ya otherwise

where a is the continuous output (we're using a here to be consistent with the neural network terminology of activation)

and y is the desired/target output
e Tried to find parameters 6 of our model to minimize loss summed over the training data

Consider a single "neuron” with a linear activation function; that is, where alL => w,fla:k + w&l. In this case, we have
L=1and ff(2) = 2.
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1.1.A) Write a short program to compute the gradient of the loss function with respect to the weight vector (not the bias):
Vo Loss(a¥,y) when Loss(a,y) = Ly(ya).

e x is a column vector
e vy isanumber, a label
® ais a number, an activation

It should return a column vector.

( N

1 def hinge_loss_grad(x, y, a):
2 d, n = x.shape
3 ifa*ry>1: v

[ ) i e | i 0000%

You have infinitely many submissions remaining.

1.2) Log loss, sigmoidal activation

Another way to make the output for a classifier continuous is to make it be in the range (0, 1), which admits the interpretation
of being the predicted probability that the example is positive. A convenient way to make the activation of a unit be in the
range (0, 1) is to use a sigmoid function:

B 1
C 14e

o(z)

The figure below shows a sigmoid activation function on the left, with the rectified linear (ReLU) activation function on the right
for comparison.

sigmoid o ReLU

o(z) =
max(0, z)

o(z) =

@

08

06

04

02

0

-10 -5 0 5 10 -10 =5 0 5 10

Z z

1.2.A) What is an expression for the derivative of the sigmoid with respect to z, expressed as a function of z, its input?

4 N\
Enter a Python expression (use ** for exponentiation) involving e and z:
(e (-z))(1+e**-z)**2

’ ‘ ’ ‘ } ‘ 100.00%

You have infinitely many submissions remaining.
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1.2.B) What is an expression for the derivative of the sigmoid with respect to z, but this time expressed as a function of 0 =
o(z), its output?

Hint: Think about the expression 1 — (Here is a review of computing derivatives.)

_1
14+e2"

4 N\
Enter a Python expression (use ** for exponentiation) involving only o (note: eand z are not allowed, and
remember 0 = o(2)): (1-0)o

’ ‘ ’ ‘ } ‘ 100.00%

You have infinitely many submissions remaining.

In this model, we will consider positive points to have label +1, and negative points to have label 0.

We need a loss function that works well when we are predicting probabilities. A good choice is to ask what probability is
assigned to the correct label. We will interpret the value outputted by our classifier as the probability that the example is
positive. So, if the output value is a and the true label is +1, then the probability assigned to the true label is a; on the other
hand, if the true label is 0, then the probability assigned to the true label is 1 — a. Because we actually will be interested in the

probability of the predictions on the whole data set, we'd want to choose weights to maximize

[T P@a®,4)
t

where P(a(t) , y(t)) is the probability that the network predicts the correct label for data point ().

Using a notational trick (which turns an if expression into a product) that might seem unmotivated now, but will be useful later,
we can write the probability P(a,y) as

P(a,y) = a?(1 — a)* Y.

1.2.C) What is the value of P(a,y) wheny = 0?

Enter an expression for P(a,y) when y = 0 in terms of a: 1-a

’ ‘ ’ ‘ } ‘ 100.00%

You have infinitely many submissions remaining.

1.2.D) What is the value of P(a,y) wheny = 1?

Enter an expression for P(a,y) when y = 1 in terms of a: a

[ ] Lo e ) %

You have infinitely many submissions remaining.

1.2.E) Find a simplified expression for log P(a, y) that does not use exponentiation. Note that we refer to the natural
logarithm 1n as log throughout this assignment, consistent with the lecture notes.
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Enter an expression in terms of y and a; you can use log(.) to indicate natural log:
y*log(a) + (1-y)*log(1-a)
H H H 100.00%

You have infinitely many submissions remaining.
N J

In fact, because log is a monotonic function, the same weights that maximize the product of the probabilities will minimize the
negative log likelihood ("likelihood" is the same as probability; we just use that name here because the phrase is an idiom in
machine learning, abbreviated NLL):

Loss(a,y) = NLL(a,y) = —yloga — (1 — y) log(1 — a).

Our objective function (over our 1 data points) will then be

n

Z NLL(a®,y®) = — Z [y(t) loga® + (1 —y®)log(1 — a®)

t=1

Remember that a(®) is our model's output for training example ¢, and y(t) is the true label (+1 or 0).

Now, we can think about a single unit with a sigmoidal activation function, trained to minimize NLL. So, af =
o (D, wi 1k 4 w(y). In this case, we have L = 1.

1.2.F) Write a formula for the gradient of the NLL with respect to the first weight, wal NLL(al',y), for a single training

example. Hint: consider using the chain rule; the final answer (expression) is very short.

Write an expression in terms of x_1, a_1,and y: (a_1-y)*x_1

’ ‘ ’ ‘ } ‘ 100.00%

You have infinitely many submissions remaining.

1.2.G) Write a formula for the gradient of the NLL with respect to the full weight vector, Vi« NLL(alL, y), for a single
training example.

Enter an expression in terms of x, a_1, and y: (a_1-y) *x

[t ) [ v | ] 000

You have infinitely many submissions remaining.

2) Multiclass classification

What if we needed to classify homework problems into three categories: enlightening, boring, impossible? We can do this by
using a "one-hot" encoding on the output, and using three output units with what is called a "softmax" (SM) activation module.
It's not a typical activation module, since it takes in all ny, pre-activation values zJL in R and returns ny, output values aJL €

[0, 1] such that Zj af = 1. This can be interpreted as representing a probability distribution over the possible categories.

The individual entries are computed as
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e’
aj =

=—
> e
k=1

We'll describe the relationship of the vector a on the vector z as

a = SM(z)
The network below shows a one-layer network with a linear module followed by a softmax activation module.

— al

—p —> 3

input layer 1 output

v

2.A) What probability distribution over the categories is represented by z* = [—1,0, l]T?

p
Enter a distribution (a list of three numbers adding up to 1) for the three categories. Your answers should be

numeric (please enter numbers, and do not use the symbol e):
[0.09, 0.24, 0.66]
‘ H H ’ 100.00%

You have infinitely many submissions remaining.

J

N
Now, we need a loss function Loss(a, y) where a is a discrete probability distribution and ¥ is a one-hot vector encoding of a
single output value. It makes sense to use negative log likelihood as a loss function for the same reasons as before. So, we'll just

extend our definition of NLL from earlier:

nL
NLL(a,y) = — Zyj Inaf.
j=1

Note that the above expression is for multi-classes (number of class > 2). For two-classes, the expression reduce to what you

saw after Problem 1.2.E.
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2B)Ifa =[3,.5,.2]T andy = [0,0,1)T, whatis NLL(a,y)?

Enter an expression involving log(.) (for natural log) and constants: -log(0.2)

| Lo | | jroo-ao%

You have infinitely many submissions remaining.

Now, we can think about a single layer with a softmax activation module, trained to minimize NLL. The pre-activation values
(the output of the linear module) are:

L L L
2 =) wiymk + g
k
and al = SM(21).
To do gradient descent, we need to know a%NLL(aL, y). We'll reveal the secret (that you might guess from Problem 1)
kg

that it has an awesome form! (Please consider deriving this, for fun and satisfaction!)

0

L
Owy;;

NLL(a",y) = zi(aj — y;)

And of course, it's easy to compute the whole matrix of these derivatives, Vyr NLL(a®, y), in one quick matrix computation.

2.C) Suppose we have two input units and three possible output values, and the weight matrix wtis

;o [1 -1 -2
W‘[—1 2 1

or in Python form: w = np.array([[1, -1, -2], [-1, 2, 1]]).
Assume the biases are zero, the input z = [1,1]% (e.g, x = np.array([[1, 1]1).T), and the target output y = [0, 1,0]% (e.g,
y = np.array([[0, 1, ©]1).T). What is the matrix V- N LL(al, y)? Hint: You might want to solve using Python and numpy,

or using colab for calculation.

( 2\
Enter the matrix as a list of lists, one list for each row of the matrix. Please enter values with a precision of three
decimal points. [[0.244, -0.334, 0.09003057], [ 0.244, -0.334, 0.09003057]]

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.
\ J

2.D) What is the predicted probability that x is in class 1, before any gradient updates? (Assume we have classes 0, 1, and 2.)

Enter a number: 0.6652

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

2.E) Using step size 0.5, what is W after one gradient update step?
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Enter the matrix as a list of lists, one list for each row of the matrix. Please enter values with a precision of three
decimal points. [[ 0.87763576, -0.83262048, -2.04501529], [-1.12236424, 2.16737952, 0.95498471]]

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

2.F) What is the predicted probability that  is in class 1, given the new weight matrix?

Enter a number: 0.77245284

‘ ’ ‘ ’ ‘ ’ 100.00%

You have infinitely many submissions remaining.

3) Neural Networks

In this problem we will analyze a simple neural network to understand its classification properties. You might find the colab file
useful. However, we encourage you to go through all the calculation by hand once, which should be a good practice.

Consider the neural network given in the figure below, with ReLU activation functions (f1 in the figure) on all hidden neurons,
and softmax activation (f2 in the figure) for the output layer, resulting in softmax outputs (a% and a% in the figure).

|
input layer 1 layer 2 output

Given an input ¢ = [z, m2]T, the hidden units in the network are activated in stages as described by the following equations:

z = mlwil + mg'w;l + wé,l a; = max{z;,0}
z = :clwi2 + w2w§’2 + w[l]’2 ay = max{z,,0}
7= mlwi?, + $2’LU%’3 + 'u)é’3 ai = max{z3,0}
z, = wlw%A + :1:2w574 + w[lL4 ay = max{z,,0}
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2 _ 1,2 1, 2 1, 2 1, 2 2
2] = ajwy; + QWi + a3W3 1 + AWy g + Wo

2 _ 1.2 1,2 1,2 1,2 2
Zy = QW] 5 + QW5 5 + A3W3 5 + AWy 5 + Wp 5.

The final output of the network is obtained by applying the softmax function to the last hidden layer,

2

2 e
al_ 22 22
el + e~

2

2 e
ay = —.
Z. Z
el + e~

In this problem, we will consider the following setting of parameters:

» -1
'wh wiz wi?) 'wi4 ~[r 0 -1 0 w(l),z !
w%,l w%,z w%,:’, w%4 _[0 10 _1]’ w(l),?, 1y
'w(l),4 -1
w%,1 wi2 1 -1
w%,l w§,2 ! w(Z),l B [0]
w§,1 w§72 IR RS w§,2 L2
w4211 wfm 1 -

3.1) Output

Consider the input 1 = 3, o = 14.

3.1.A) What are the outputs of the hidden units, (f1(21), f1(23), f1(23), f1(2})).

Enter a Python list of 4 numbers: | [2, 13,0, 0]
‘ H H ’ 100.00%

You have infinitely many submissions remaining.

3.1.B) What is the final output (a?, a3) of the network?

Enter a Python list of 2 numbers: [1, 0]
‘ H H ’ 100.00%

You have infinitely many submissions remaining.

3.2) Unit decision boundaries

Let's characterize the decision boundaries in x-space, corresponding to the four hidden units. These are the regions where the
input to the units z%, z21, z%, zi are exactly zero.
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Hint: You should draw a diagram of the decision boundaries for each unit in the x-space and label the sides of the boundaries
with 0 and + to indicate whether the unit's output would be exactly 0 or positive, respectively. (The diagram should be a 2D
plot with &1 and x5 on each axis, with lines for z% =0, z21 =0, z§ =0, zi =0)

3.2.A) What is the shape of the decision boundary for a single unit?

Choose one: Line v

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

3.2.B) Enter a 2 x 4 matrix where each column represents a (different) input vector [z1, mz]T each of which is on the decision
boundary for the first unit, that is, for which z% = 0. (There are multiple possible answers.)

6 N
Enter a Python list of lists where each list is a row of the matrix.
[[1,1,1,1],[1, 3, 234, 546853]]

‘ ’ ‘ ’ ‘ ’ 100.00%

You have infinitely many submissions remaining.
- J

3.2.C) Consider the following input vectors: () = [0.5,0.5]7, 2(®) = [0,2]7, 23 = [—3,0.5]T. Enter a matrix where each
column represents the outputs of the hidden units (f(z%), ceey f(zi)) for each of the input vectors. You can use your diagram
of decision boundaries.

( N
Enter a Python list of lists where each list is a row of the matrix.
[[0,0,0]0, 1,0]0, 0, 2],0, 0, 0]

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.
\ J

3.3) Network outputs

In our network above, the output layer with two softmax units is used to classify into one of two classes. For class 1, the first
unit's output should be larger than the other unit's output, and for class 2, the second unit's output should be larger. This
generalizes nicely to k classes by using k output units.

(We have previously examined addressing two-class classification problems using a single output unit with a sigmoid activation;
this is another way to address them.)

Let's characterize the region in z-space where this network's output indicates the first class (that is, af is larger) or indicates the
second class (that is, ag is larger). Your diagram from the previous part will be useful here.

What is the output value of the neural network in each of the following cases? Write your answer for a? as expressions, you can
use powers of €, for example, e**2 + 1; the exponents can be negative, e**(-2) + 1.

Case 1) For f(21) + f(22) + f(2)) + f(z1) =0
3.3.A)
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a? = e"0/(e”0 +e"2)

’ ‘ ’ ‘ } ‘ 100.00%

You have infinitely many submissions remaining.

3.3.B)

a3 = e™2/(e"0 +e™2)

e |

You have infinitely many submissions remaining.

3.3.0)

Which class is predicted? Class2 v
‘ H H ’ 100.00%

You have infinitely many submissions remaining.

Case 2) For f(21) + f(23) + f(25) + f(21) = 1

3.3.D)

2 _
aji = 12

’ ‘ ’ ‘ } ‘ 100.00%

You have infinitely many submissions remaining.

3.3.F)

2 _
as = 112

’ ‘ ’ ‘ ] ‘ 100.00%

You have infinitely many submissions remaining.

3.3.F)

Which class is predicted? | Boundary v

‘ ’ ‘ ’ ‘ ’ 100.00%

You have infinitely many submissions remaining.

Case 3) For f(21) + f(23) + f(25) + f(21) = 3

3.3.G)
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a? = e"3/(e"3+e™-1)

’ ‘ ’ ‘ } ‘ 100.00%

You have infinitely many submissions remaining.

3.3.H)

a3 = e-1/(e™3+e 1)

e |

You have infinitely many submissions remaining.

3.3.0)

Which class is predicted? | Class 1 v

‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.
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A code and data folder that will be useful for doing this lab can be found here. Download this to your computer, or
alternatively, use the colab notebook.

This homework continues the exploration and implementation of neural networks as discussed in the notes.

In particular, this homework considers neural networks with multiple layers. Each layer has multiple inputs and outputs, and can
be broken down into two parts:

e Alinear module that implements a linear transformation: z; = (>_;" 1 ;Wi ;) + Wo specified by a weight matrix W
and a bias vector Wp. The output is [21, . . . , zn)” .

¢ An activation module that applies an activation function to the outputs of the linear module for some activation function
f. such as Tanh or ReLU in the hidden layers or Softmax (see below) at the output layer. We write the output as: :
[f(21),...,f(zm)]%, although technically, for some activation functions such as softmax, each output will depend on all

the z;, not just one.
We will use the following notation for quantities in a network:

¢ Inputs to the network are x1, ..., Z4.
e Number of layers is L

e There are m! inputs to layer [

e There are n! = m!™! outputs from layer [

Ly nlt matrix, and the bias vector (offset) is Wé, ann! x 1 vector

e The weight matrix for layer [ is W, an m
e The outputs of the linear module for layer [ are known as pre-activation values and denoted 2!
e The activation function at layer L is f'(-)

l

o Layerl activations are a’ = [f'(2}),..., f(z})]F

n
e The output of the network is the values a” = [fL (z{‘), N (zf;’L )F

e Loss function Loss(a,y) measures the loss of output values a when the target is y

Here is an illustrative picture:

input layer 1 layer 2 output

1) Backpropagation

The materials for week 6 and week 7 will be helpful here, including the week6 lecture and week? lecture.
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We have seen in the how to train multi-layer neural networks as classifiers using stochastic gradient descent
(SGD). One of the key steps in the SGD method is the evaluation of the gradient of the loss function with respect to the model
parameters. In this problem, you will derive the backpropagation method for a general L-layer neural network. We'll exploit the
decomposition of the network into linear and activation modules that we introduced at the start of this homework. Remember
that we've defined the shapes of the various quantities at the start of the homework.

e Each linear module has a forward method that takes in a column vector of activations A (from the previous layer) and
returns a column vector Z of pre-activations; it can also store its input or output vectors for use by other methods (e.g.,

for subsequent backpropagation).

e Each activation module has a forward method that takes in a column vector of pre-activations Z and returns a column
vector A of activations; it can also store its input or output vectors for use by other methods (e.g., for subsequent
backpropagation).

e Each linear module has a backward method that takes in a column vector % and returns a column vector %. This

OLoss OLoss . . .
module also computes and stores === and o, the gradients with respect to the weights.

e Each activation module has a backward method that takes in a column vector agfs and returns a column vector %.

The backpropagation algorithm will consist of:

e (Calling the forward method of each module in turn, feeding the output of one module as the input to the next; starting
with the input values of the network. After this pass, we have a predicted value for the final network output.

e (Calling the backward method of each module in reverse order, using the returned value from one module as the input
value of the previous one. The starting value for the backward method is aLoss(aL, y)/@aL, where a® is the activation
of the final layer (computed during the forward pass) and y is the desired output (the label).

1.1) Linear Module

The forward method, given A from the previous layer, implements:

Z=WTA+W,

and stores the input A to be used by the backward method.

l l l

Recall that there are n! = m!*! outputs from layer I. For layer I, W is am
the previous layer is a n!~1 x 1 (orm! x 1) vector. Given these shapes, make sure that you understand why the forward
equation has W7 and not W.

x n! matrix, Wy is an! x 1 vector, and A from

The following questions ask for a matrix expression involving any of A, z, dLdA, dLdz,w and w_e.

Enter your answers as Python expressions. You can use transpose(x) for transpose of an array, and x@y to indicate a
matrix product of two arrays. Remember that x*y denotes component-wise multiplication.

The backward method, given dLAZ = 0Loss/0Z (an n! x 1 vector), returns dLdA = OLoss/0A (an m! x 1 vecton):

OLoss B 0Z O0Loss
dA ~ 0A 0Z

1.1.A)
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dLdA= W@dLdzZ

’ ‘ ’ ‘ ’ ‘ 100.00%

You have infinitely many submissions remaining.

The backward method, given dLAZ = dLoss/0Z, also computes dLdW (an m! x n! matrix) and dLAWO (an n! x 1 vector),
and stores them in the module instance.

OLoss 0Z OLoss

dAdV = =57~ = ow oz

1.1.B)

dLdW= A@transpose(dLdZ)

’ ‘ ’ ‘ ] ‘ 100.00%

You have infinitely many submissions remaining.

and
dLAWO — OLoss _ OLoss 07
oWy 0Z OW,
1.1.C)
dLdwe= dLdZ
H H H 100.00%

You have infinitely many submissions remaining.

We will use dLdw and dLdwe as the gradient values in SGD.

1.2) Activation Module

Activation modules don't have any weights and so they are simpler.

The forward method for functions like tanh or sigmoid, given Z, return the function on the vector, componentwise. Softmax
operates on the whole vector, as described earlier, and will need some special treatment.

The backward method, given dLdA = OLoss/0A, returns:

OLoss O0Loss 0A
dLdZ = = —
07 0A 07

l

In this case, m! = n! and the guantities are column vectors of that size.

For Softmax = SM (Z) at the output layer and assuming that we are using NLL as the Loss(A,Y") function, we have seen

OLoss .

5, hamely, it is the prediction error A — Y. Asimilar result holds when using NLL

that there is a simple form for dLdZ =
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with a sigmoid output activation or a quadratic loss with a linear output activation. Note that for hinge loss with a linear
activation, the form of dLdz is different (see the lecture notes on the hinge loss).

2) Implementing Neural Networks

Please watch the lecture videos for this week before attempting this problem. Additionally, please review the

Although for "real" applications you want to use one of the many packaged implementations of neural networks (we'll start
using one of those soon), there is no substitute for implementing one yourself to get an in-depth understanding. Luckily, that is
relatively easy to do if we're not too concerned with maximum efficiency.

We'll use the modular implementation that we guided you through in the previous problem, which leads to clean code. The
basic framework for SGD training is given below. We can construct a network and train it as follows:

# build a 3-layer network

net = Sequential([Linear(2,3), Tanh(),
Linear(3,3), Tanh(),
Linear(3,2), SoftMax()])

# train the network on data and labels

net.sgd(X, Y)

You will need to fill in the missing code. We encourage you to test in your own Python environment and then paste your answer
and verify the results. The test cases are provided in the code distribution linked at the top of the page. The code distribution
includes additional test methods that will test each of the methods in turn, so you can debug incrementally. Below are
some hints for some of the methods:

® Sequential.sgd: Implement SGD. Randomly pick a data point Xt, Yt by using np.random.randint to choose a random index
into the data. Compute the predicted output Ypred for Xt with the forward method. Compute the loss for Ypred relative to
Yt. Use the backward method to compute the gradients. Use the sgd_step method to change the weights. Repeat.

e SoftMax.class_fun: Given the column vector of class probabilities for each point (computed by Softmax), this returns a
vector of the classes (integers) with the highest probability for each point.

o We will (later) be generalizing SGD to operate on a "mini-batch" of data points instead of a single point. You should strive
for an implementation of the forward, backward, and class_fun methods that works with batches of data. Whenever b is
mentioned as part of the shape of a matrix in the code, this b refers to the number of points.

¢ A note on debugging. We have provided you with a file code_for_hw7.py (as well as a colab) that has a copy of the
template below and a detailed set of outputs to check your implementation. Trying to debug directly on MITx will not
be a good experience; intermediate tests for each method are available ONLY in the code file/colab.
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class Module:
def sgd_step(self, lrate): pass # For modules w/o weights

Linear modules

Each linear module has a forward method that takes in a batch of
activations A (from the previous layer) and returns
a batch of pre-activations Z.

Each linear module has a backward method that takes in dLdZ and
returns dLdA. This module also computes and stores dLdW and dLdWe,
the gradients with respect to the weights.
class Linear(Module):
def __init_ (self, m, n):
self.m, self.n = (m, n) # (in size, out size)
self.W0 = np.zeros([self.n, 1]) # (n x 1)
self.W = np.random.normal(®, 1.0 * m ** (-.5), [m, n]) # (m x n)

def forward(self, A):

self. A=A # (m x b) Hint: make sure you understand what b stands for #da

return self.W.T@self.A +self.W0 # Your code (n x b)

def backward(self, dLdZ): # dLdZ is (n x b), uses stored self.A
self.dLdW = self.A @ dLdZ.T # Your code
self.dLdW® = np.sum(dLdZ, axis = 1, keepdims=True)# Your code
return self.W @ dLdZ # Your code: return dLdA (m x b)

def sgd_step(self, lrate): # Gradient descent step
self.W = self.W - lrate * self.dLdW # Your code
self.WO = self.WO - lrate * self.dLdWe # Your code

Activation modules

Each activation module has a forward method that takes in a batch of
pre-activations Z and returns a batch of activations A.

Each activation module has a backward method that takes in dLdA and
returns dLdZ, with the exception of SoftMax, where we assume dLdZ is
passed in.
class Tanh(Module): # Layer activation
def forward(self, Z):

self.A = np.tanh(Z)

return self.A

#
#
#
#
#
#
#
#

def backward(self, dLdA): # Uses stored self.A
# print(f'dlda : {dLdA}")
return dLdA * (1.0 - (self.A ** 2))

class ReLU(Module): # Layer activation
def forward(self, Z):
self.A = np.maximum(Z, np.zeros(Z.shape)) # Your code: (?, b)
return self.A

def backward(self, dLdA): # uses stored self.A
return dLdA * (self.A != @) # Your code: return dLdZ (?, b)

class SoftMax(Module): # Output activation
def forward(self, Z):
z_exp = np.exp(Z)
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64 sum = np.sum(z_exp, axis=0)
65 return z_exp/sum
66
67 def backward(self, dLdZ): # Assume that dLdZ is passed in
68 return dLdZ
69
70 def class_fun(self, Ypred): # Return class indices
71 return np.argmax(Ypred, axis=0) # Your code: (1, b)
72
73
74 # Loss modules
75 # R M
7c

[Forere ) S e e i ] 0080%

You have infinitely many submissions remaining.

. J
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